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Mechanics Editorial

This editorial gives me an opportunity to introduce myself as the new editor of theJournal of Applied Mechanics. I succeed Lewis
Wheeler who served almost ten years at the head of the Journal. On its behalf, I wish to extend thanks to him for his long servi
which the Journal of Applied Mechanicshas stayed at the forefront of its area and maintained its position as one of the le
periodicals in the fields of engineering.

During Professor Wheeler’s term of service, important innovations were introduced. These changes will make it even more a
for the applied mechanics community to publish its best work in the Journal. The length limit for papers has been increased to
pages, approximately 9,000 words. This increase from the previous level of 6 pages became effective some time ago and is
to any paper now submitted to the Journal. The board of Associate Editors and the Division of Applied Mechanics is convinced
increase in the length limit will enable the journal to publish papers in a more effective format and to allow it to attract a
diversity of excellent papers in areas where it was previously difficult to fit within the Journal’s length constraints. Not least, t
length limit will enhance the Journal’s ability to attract the best papers in the fields of applied mechanics and therefore w
maintain its leading position.

The Journal now publishes bimonthly and the time between the submission of a paper and its publication has improved dra
The Journal can now achieve publication of a paper in as little as 10 months after it has been first received at the editorial offic
be confirmed by the submission dates in the May, 2002 issue. The bimonthly format also results in the Journal appearing o
shelves and on desks more frequently, commanding the attention of those working in the fields of applied mechanics more o
year. This publishing schedule makes theJournal of Applied Mechanicsa more compelling habit on the part of its readers and a be
vehicle for the publication of the best work in our field.

Another innovation that has been introduced is that special collections of papers will be assembled by editorial teams com
Associate and Guest editors. The first of these on the nanomechanics of surfaces and interfaces, edited by Demitris Kouris an
Gao, has already appeared in the July 2002 issue. These special collections will focus the attention of Journal readers on top
in applied mechanics and will be used to highlight important trends and developments in the fields relevant to theJournal of Applied
Mechanics.

The typesetting, graphics and printing of the Journal have been improved. This has given the papers in the Journal a mo
sional appearance, so that authors can be better satisfied about how their work is being presented to the world. These bene
simply cosmetic; as a consequence of the changes, authors are now able to present information and data more clearly and w
effectiveness in experimental papers and in the form of computer-generated graphics.

These improvements will encourage authors to continue to send their best work to theJournal of Applied Mechanics. In my period
of being editor, I will endeavor to ensure that the Journal capitalizes on these changes and maintains its position as one of th
periodicals in the field of applied mechanics. With advice from authors, the board of Associate Editors and the leaders
membership of the ASME Division of Applied Mechanics, I will seek further innovations in the Journal to improve its o
effectiveness, its attractiveness to potential authors and its significance and importance among its readership. This, I hope, w
a growth within the Journal of emerging areas of importance in applied mechanics and a broadening of the coverage
disciplinary fields connected to them. We will also be considering improvements to the handling of manuscripts and rev
electronic means to improve the efficiency of the process and to ease the work of authors, reviewers and Associate Edit
ensuring that the Journal remains the vehicle of choice for the best work in applied mechanics.

For me, it is a great honor to be appointed Editor of theJournal of Applied Mechanics. I follow in the footsteps of many distinguishe
individuals who have served before me in this position, such as the first Technical Editor, John Lessells, and his joint succes
Drucker and Joe Kestin. It is my hope that I will succeed as well as my predecessors in my stewardship of the Journal and car
responsibilities as Editor in a way that makes the Journal stronger and more effective. In all this, though, theJournal of Applied
Mechanics, the board of Associate Editors and I need the support of the community of applied mechanics in the form of the sub
of its best papers and its willingness to carry out reviews of papers under consideration for publication. We hope that our effo
coming years will merit that support and together we can assure that theJournal of Applied Mechanicscontinues to be the leading
publication for the field of applied mechanics.

Robert M. McMeeking
Copyright © 2002 by ASMEJournal of Applied Mechanics SEPTEMBER 2002, Vol. 69 Õ 569
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A Microstructurally Based
Orthotropic Hyperelastic
Constitutive Law
A constitutive model is developed to characterize a general class of polymer and pol
like materials that displays hyperelastic orthotropic mechanical behavior. The strain
ergy function is derived from the entropy change associated with the deformatio
constituent macromolecules and the strain energy change associated with the deform
of a representative orthotropic unit cell. The ability of this model to predict nonline
orthotropic elastic behavior is examined by comparing the theory to experimental re
in the literature. Simulations of more complicated boundary value problems are
formed using the finite element method.@DOI: 10.1115/1.1485754#
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1 Introduction
Many engineering materials such as wood and fiber-reinfor

composites, as well as biological tissues such as cardiac tissu
skin, demonstrate anisotropic elasticity due to the presence of
or more preferred directions in the microstructure of the mater
The degree of anisotropy is dependent on the preferred direc
and can be orthotropic~for some biological tissues, for example!
or transversely isotropic~fiber-reinforced composites! depending
on the microstructural symmetries. Additionally, the anisotro
can vary within the material as the orientation of the fibe
changes. Anisotropic materials that undergo small deformat
can generally be modeled using conventional anisotropic lin
elasticity. However, for rubbery elastic anisotropic materials s
as collagenous biological tissues that can undergo large defo
tions and exhibit nonlinear elasticity, a different constituti
model must be used.

Attempts to model orthotropic hyperelasticity are primarily m
tivated by observed orthotropic, nonlinear behavior in human
sue, such as skin~@1,2#! and heart tissue~@3–6#!. The load-
deformation responses of each of these tissues show sim
characteristics: an initial low-stiffness region, followed by a d
matically increased stiffness at higher stretches and a finite ex
sibility. Additionally, responses to deformation in each of the th
principal material directions as determined from the fibrous str
ture differ in terms of the initial stiffness and the extensibility.

Early models of orthotropic hyperelasticity considered t
strain energy function to be a polynomial function of suitab
large strain measures, such as the components of the Lagra
strain tensor~@3#!. That is, for planar deformation,

W5W~E11,E22,E12!5(
i , j ,k

ci jkE11
i E22

j E12
k (1)

whereci jk are constants;i, j, andk sum over as large a range a
necessary to capture the data; andE11, E22, and E12 are the
in-plane components of the Lagrangian strain tensor. More
cently, the polynomial function has been used as the argumeQ

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
15, 2001; final revision, September 11, 2001. Associate Editor: K. R. Rajago
Discussion on the paper should be addressed to the Editor, Professor Robe
McMeeking, Department of Mechanical and Environmental Engineering Univer
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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in the strain energy functionW5c(expQ21) wherec is a constant
~@4#!. In both cases, the strain energy function is strictly pheno
enological. However, due to its simple analytic form, this mod
has been used as a basis for investigating other mechanical
acteristics such as growth~@5#! and as the constitutive model i
finite element analyses of structures such as blood vessels~@6#!.

An example of a strain energy function that is more microstr
turally based is one that sums an isotropic term that reflects
response of the isotropic ground substance and an anisotr
term that isolates the stretch along the principal material axis
the fibrous network and provides an increased stiffness to
component of the deformation~@7#!. This decomposition can be
represented as

W5W1~ I 1 ,I 2 ,I 3!1W2~ I 4 ,I 5! (2)

whereI 1 , I 2 , andI 3 are the invariants of the right Cauchy-Gree
tensorC, I 45N•C•N, I 55N•C2

•N, andN is a unit vector that
gives the orientation of the fibers through the continuum. Mo
recently, investigators have reduced the number of invariants
essary to model tissue~for example, the dependence of the ma
rial response on the invariantsI 2 and I 5 is generally weak and
hence these invariants are not included in the strain energy f
tion!, as well as proposed forms of the functionsW1 andW2 ~@8#!.

A microstructurally based model of a different form was fir
introduced by Lanir@2#. In his initially proposed model~@2#! and
in subsequent refinements~@9–11#!, the constituent fiber or fibers
are treated as elastic fibers that can only maintain tensile load
distribution function for the unstretched lengths of the fibers in
continuum exists such that some fibers are slack in the un
formed configuration and can be distended without resistan
This distribution, coupled with a distribution of the orientation
the fibers within the planar section, allows for a bulk nonline
response even when the constituent fibers themselves are mo
as linearly elastic. The strain energy function for such a mode

W5W~ f k~l!,Rk~n!,Pk~x!! (3)

where f k(l) is the response of an individual fiber of typek to a
stretchl along its length,Rk(n) is the orientation distribution
function for fibers of typek wheren is a unit vector tangent to the
fibers, andPk(x) is the probability that a fiber of typek first bears
load at lengthx ~that is, the fiber is fully uncrimped at a lengthx!.
These models have been successful in modeling both the no
ear, locking behavior of tissue as well as the orthotropic mech
cal response.

The model presented here uses a network microstructure to
mulate a representative orthotropic unit cell. Unlike previo

ry
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rt M.
ity
pted
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models, the constituent fibers are treated from a statistical
chanics perspective such that the corresponding parameters
sess physical meaning. Also, in contrast to other models involv
an agglomeration of chains, here the fibers are connected
network and thusnetwork properties are also reflected in th
model parameters. This paper will describe the developmen
the model, its predicted response to simple deformation states
its response to inhomogeneous deformations using the finite
ment method.

2 Constitutive Model Development
To develop an orthotropic hyperelastic constitutive law ba

on the macromolecular microstructure of a material, a three-
process is employed:~1! model the constitutive response of
single macromolecule~chain!; ~2! develop the constitutive re
sponse for a representative unit cell composed of several ch
and ~3! homogenize the unit cell into a three-dimensional, co
tinuum constitutive model allowing for near incompressibilit
The strain energy functionW that results may be decomposed

W5Wentropy1Wrepulsion1Wbulk (4)

where Wentropy is due to the configurational entropy of the un
cell, Wrepulsion is due to the interchain repulsive forces in the u
cell, andWbulk is a bulk strain energy function used to enfor
near incompressibility. The first two terms are attributed to
response of the underlying anisotropic fibrous network wher
Wbulk is attributed to the isotropic interstitial fluid or ground su
stance.

2.1 Mechanical Response of a Single Fiber.The mechani-
cal response of various macromolecules, including biological m
ecules like titin~@12,13#!, tenascin~@14#!, and DNA~@9,15#!, has
been successfully modeled by using entropy-based constitu
laws. Additionally, the entropy changes associated with the de
mation of a macromolecule have been the basis of several net
models of rubber elasticity~@16–18#!. For these reasons, a
entropy-based constitutive law is used here to model the i
vidual fibers in the unit cell.

Both Gaussian and non-Gaussian~Langevin! statistics have
been used to develop models for elastic macromolecules by
suming they are freely jointed chains. Since large-deforma
~non-Gaussian! behavior will be considered here, Langevin stat
tics will be used. Details about the use of statistical mechanic
model macromolecules can be found elsewhere~@10#!; a summary
will be presented here.

A macromolecule can be modeled asN freely jointed rigid links
each of lengthl. ~Note that the parameterN is a statistical quantity
and its value will depend not only on the number of bonds in
backbone of the molecule but on the number of conformati
available to the bonds as well. As such,N is not a parameter tha
can be measured directly, but it can be related to measuremen
crosslink density and crosslink-to-crosslink chain length, for
stance.! The increase in strain energy associated with deformin
molecule from its undeformed vector lengthR to its deformed
vector lengthr ~Fig. 1! can be calculated from the entropy diffe
ence between the two states. A molecule with one end fixed a
origin and the other end located in a volumedv at a locationr has
a configurational entropy proportional to the number of ways
can occupy space with its ends so fixed, given bys
5k ln@p(r )dv# wherek51.38•10223 J/K is Boltzmann’s constan
andp(r ) is the probability that the end of the chain is located
the volumedv at r . The increase in strain energy associated w
the deformation of the chain from an undeformed chain vectoR
to a deformed chain vectorr is

Dw52QDs52kQ lnF p~r !dv
p~R!dVG (5)

whereQ is absolute temperature anddV is the volume initially
occupied by the end of the chain.
Journal of Applied Mechanics
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Following the method of Kuhn and Gru¨n @11# for freely jointed
chains, the non-Gaussian probability density function is given
logarithmic form by

ln p~r !5p02NS r

Nl
b r1 ln

b r

sinhb r
D (6)

where p0 is a constant,r 5ur u, b r5L21(r /Nl), and L(x)
5cothx21/x is the Langevin function. Assuming no volum
change due to entropy such thatdv5dV, the strain energy chang
accompanying deformation for a single chain is given by

Dw~r !5kQNF S r

Nl
b r1 ln

b r

sinhb r
D2S R

Nl
bR1 ln

bR

sinhbR
D G

(7)

wherebR5L21(R/Nl) andR5uRu. Treating the rigid linkl as a
characteristic length, Eq.~7! can be recast as

Dw~r!5kQNF S r

N
br1 ln

br

sinhbr
D2S P

N
bP1 ln

bP

sinhbP
D G

(8)

where r5r / l is the normalized deformed chain length,br

5L21(r/N), P5R/ l is the normalized undeformed chain lengt
andbP5L21(P/N). Normalization of length quantities byl will
be consistently maintained throughout the remainder of this w
and as such an explicit statement that length quantities introdu
later are normalized byl will be dropped.

It is common practice in entropy-based models to assume
undeformed length of a chain to be equal to its root mean squ
~rms! length, such thatP/N51/AN ~@19,20#!. With this assump-
tion, the nonlinear form ofDw as a function ofr/N as given in
Eq. ~8! is shown in Fig. 2 for various values ofN. Note that asN
increases~from N550 toN5200!, the rms chain length decrease
~1/AN50.14 to 1/AN50.07!. Negative values ofDw indicate that
the strain energy decreases at lengths shorter than the rms~refer-
ence! length. The selection of a value ofP/N different from the
rms length would vertically shift the curves in Fig. 2 but negati
values of Dw would still exist for r/N,P/N and Dw would
remain a monotonically increasing function ofr/N. Since a chain
is stress free at a length for which the strain energy is minimiz
a chain at any nonzero length~including its assumed undeforme
lengthP providedPÞ0! will not be stress free, regardless of i
reference length. Thus, it is not sufficient to develop a strain
ergy function based solely on the effects of isovolumetric entro
changes and additional contributions to the strain energy func
are necessary.

The freely-jointed chain approximation, used to derive t
strain energy change associated with the deformation of a si

Fig. 1 The freely-jointed chain approximation of a macromol-
ecule as a series of rigid links, with one end pinned at the ori-
gin O and the other end located by the chain vector R in its
reference configuration and by the chain vector r in its de-
formed configuration
SEPTEMBER 2002, Vol. 69 Õ 571



a
e
t
p

g

u

p
i

f
a

u

p

are
ngth

all

igid

the
um

r-
ation
ng
f
ns

us

py
ins.

ing
chain given in Eq.~8!, is one statistical representation of a ma
romolecule. However, other models exist that can similarly ch
acterize the mechanics of single chains. For example the worm
chain ~WLC! model, another entropy-based constitutive mod
has been successfully used to model long chain molecules
titin ~@13#! and DNA ~@9#!. As such, other chain models such
the WLC model could be used in place of the freely-joint
chain approximation to develop the ensuing network constitu
law. However, provided the constitutive responses that are
dicted from these chain models are similar to that of the free
jointed chain model~which is true for the WLC model!, the dif-
ferences resulting from using these models versus the fre
jointed chain model in a network constitutive model will not b
significant~@21#!.

2.2 Orthotropic Unit Cell. Constitutive theories for ini-
tially isotropic rubbery materials have been developed usin
variety of unit cells, including a three-chain model@22# a four-
chain model@23#, and the more recent eight-chain@16# model.
These models allow for the rotation of the unit cell in space s
that the principal stretches are applied along fixed cell directio
The orientation of the principal stresses and stretches, cou
with the geometry of the unit cells, insures isotropy of the init
mechanical response with respect to principal stretch space.

To incorporate the chain statistics into a unit cell that allows
the initial orthotropy of a network with a preferred fiber orient
tion, an eight-chain orthotropic unit cell is used as shown in F
3. Orthotropy of the mechanical response of this unit cell res
from two properties: the fixed orientation of the unit cell in spa
~as specified by the orthogonal principal material axesa, b, andc
rotated relative to the reference coordinate systemX i! and the
‘‘dimensions’’ a, b, andc along the axesa, b, andc, respectively
~these ‘‘dimensions’’ are actually dimensionless as they have b
normalized byl!. Accordingly, the vector descriptionsP( i ) of each
of the chains in the undeformed unit cell where the superscrii
51 . . . 8 denotes the chain number are

P~1!52P~5!5
a

2
a1

b

2
b1

c

2
c;

P~2!52P~6!5
a

2
a1

b

2
b2

c

2
c;

Fig. 2 The change in strain energy accompanying deforma-
tion of a single macromolecular chain from its rms length. In-
set: a close-up of the curves near their respective rms lengths,
showing that a decrease in chain length below the reference
rms length results in a decrease in strain energy.
572 Õ Vol. 69, SEPTEMBER 2002
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P~3!52P~7!5
a

2
a2

b

2
b1

c

2
c;

P~4!52P~8!5
a

2
a2

b

2
b2

c

2
c. (9)

The lengthP of each undeformed chain is

P5
1

2
Aa21b21c2. (10)

Because the undeformed lengths of each of the eight chains
equivalent and because it is assumed that the undeformed le
of each chain is the rms length of the chain (P5AN), a constraint
is established between the chain parameterN and the unit cell
aspect ratios,

AN5
1

2
Aa21b21c2. (11)

This constraint follows from a consistent normalization of
length quantities byl and means that larger values ofa, b, andc
necessarily reflect constituent chains with a larger number of r
links.

Assuming an affine deformation, that is that the ends of
chains are fixed in the continuum and deform with the continu
~Lagrangian! strain fieldE, the deformed lengthsr ( i ) of the indi-
vidual chains are

r~ i !5AP~ i !T
•C•P~ i ! (12)

where C52E1I is the right Cauchy-Green tensor andI is the
identity tensor. Terms of this form satisfy material frame indiffe
ence on inspection since they are dependent on the deform
only through the Lagrangian strain tensor. Note that followi
Spencer@17#, the invariants for a material with four families o
reinforcing fibers oriented along the nonnormalized directio
P(1)2P(4) includeI P( i )P( j )5P( i )T

•C•P( j )/P2 for i, j 51 . . . 4. The
deformed lengthsr ( i ) are functions of these invariants and th
satisfy the symmetry requirements given by Spencer@17#.

The strain energy of the unit cell due to configurational entro
changes is the sum of the strain energies of the individual cha
Noting that from Eqs.~9! and~12! the deformed length of a chain
P(1 – 4) is equivalent to the deformed length of the correspond

Fig. 3 Eight-chain, three-dimensional orthotropic unit cell.
The eight curved lines in the unit cell represent the constituent
macromolecules and the straight lines represent the bound-
aries of the unit cell. The cell has dimensions aÃbÃc along the
material axes a, b, c, respectively, oriented with respect to the
reference coordinate system X i .
Transactions of the ASME
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chainP(5 – 8), the strain energyw of the unit cell resulting from the
entropy change associated with stretching the eight constit
chains is

wentropy5w012kQN(
i 51

4 Fr~ i !

N
br

~ i !1 ln
br

~ i !

sinhbr
~ i !G (13)

wherew0 is a constant related to the nonzero entropy of the
deformed chains~thus allowing Eq.~13! to be written in terms of
wentropy as opposed toDwentropy! andbr

( i )5L21@r ( i )/N#. Because
wentropy is dependent on the deformation only throughr ( i ), this
strain energy function satisfies material frame indifference.

The strain energy functionwentropy is minimized whenr ( i )50,
consistent with the previous discussion of Fig. 2, and thus
stress-free configuration of the unit cell when considering only
entropic contributions of the constituent chains to the strain
ergy is not the reference configuration. To enforce the previ
assumption that the reference length of each constituent cha
equal to its rms length and establish a stress-free finite-volu
unit cell composed of eight chains at their rms lengths, an a
tional term in the strain energy function is needed. This term
denotedwrepulsion since it reflects a mutual repulsion of chain
from each other that will prevent the entropic collapse of the u
cell while maintaining the orthotropic shape of the unit cell.
similar reasoning has been used previously to prevent the
dicted entropic collapse of isotropic compressible rubbery ela
materials by including a term of the formc0 ln l1l2l3 in the strain
energy function wherec0 is a constant andl i are the principal
stretches~@18#!. Accordingly, the orthotropic strain energy func
tion here is augmented by the term

wrepulsion52
8kQANbP

a21b21c2 ln~la
a2

lb
b2

lc
c2

! (14)

wherela5AaT
•C•a, lb5AbT

•C•b, andlc5AcT
•C•c represent

the stretches along the principal material axes. The coefficien
wrepulsion allows for a finite-volume stress-free reference st

while the functional dependence onla
a2

lb
b2

lc
c2

allows for an
orthotropic response of the unit cell. Note thatwrepulsion satisfies
material frame indifference on inspection as it is dependent on
deformation throughE. Also, since the unit vectorsa, b, andc can
be written in terms of the fiber directionsP(1)2P(4) using Eq.~9!,
then la , lb , and lc can be written in terms of the invariant
I P( i )P( j ) presented earlier and as proposed by Spencer@17# for ma-
terials reinforced by four classes of fibers. Finally, note that
effect of wrepulsion on the total strain energy will be increasing
less significant as the material becomes more highly deforme
this is when the nonlinear strain hardening predicted bywentropy is
realized.

2.3 Homogenization and Bulk Compressibility. The unit
cell above can be homogenized to form a macroscopic th
dimensional strain energy function. Assuming a fiber density
unit volume ofn and noting there are eight chains per unit cell, t
strain energy function per unit volume is

W~x!5(
n/8

w~x!5
n

8
~wentropy1wrepulsion!. (15)

Note that the parameters in the model~the chain densityn and the
unit cell dimensionsa, b, andc! need not be constant but can va
with locationx.

The constitutive law above is overly compressible in practi
To allow for control over the compressibility of the material a
isotropic bulk contribution

Wbulk5
B

a2 $cosh@a~J21!#21% (16)

is appended to the strain energy function whereJ5detF is the
ratio of the deformed to the undeformed volume. This form
Journal of Applied Mechanics
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Wbulk was developed for modeling the compressibility of ela
tomers at finite deformations and was shown to capture the
ume changes of several elastomers undergoing hydrostatic c
pression and uniaxial tension tests~@18#!. There are two free
parameters in this model,B anda; B controls the bulk compress
ibility near J51 ~no volume change! anda governs the curvature
of the hydrostatic pressure versus volume curve for larger volu
changes. As this term governs the bulk isotropic response of
material, it can be attributed to the response of the isotropic ne
incompressible ground substance that is present in orthotropic
perelastic materials such as biological tissue.

The final form of the strain energy function is

W~x!5W01
nkQ

4 S N(
i 51

4 Fr~ i !

N
br

~ i !1 ln
br

~ i !

sinhbr
~ i !G

2
bP

AN
ln@la

a2
lb

b2
lc

c2
# D 1

B

a2 $cosh@a~J21!#21%

(17)

whereW0 is a constant.

3 Continuum Mechanics Considerations
This constitutive law is developed consistent with the tenets

continuum mechanics as provided in detail elsewhere; condit
that must be met include material frame indifference and mate
symmetry ~@24#!. As stated previously, since the strain ener
function is only dependent on the deformation state through
Lagrangian strain tensorE it satisfies objectivity~material frame
indifference! on inspection. Additionally, it has been noted that t
strain energy functionW proposed here can be written as

W5Ŵ~ I P~ i !P~ j !,J! (18)

where (I P( i )P( j ),J) with i, j 51 . . . 4 represents a subset of th
invariants presented by Spencer for a material with four fami
of reinforcing fibers~@17#!. However, this does not speak direct
to the symmetry of materials for which this model is applicable
the symmetry is dependent on the relative orientations of the fi
families.

Towards this end, one approach that can be used to examin
implications of material symmetry has been developed by Sm
and Rivlin, for example,~@25#! where orthogonal transformation
of the material coordinate systems are considered. This appr
is followed here, where the material coordinate system is defi
by the principal material directionsa, b, andc.

Let H denote a coordinate transformation~such as rotation! that
does not change the mathematical description of the microst
ture of the material. For an isotropic material, this transformat
could be any rotation. For the orthotropic material here defined
the material axesa, b, andc, the set of symmetry transformation
H1 is composed of any transformation that inverts one or sev
of the material axes such that

H1F a
b
c
G5F 6a

6b
6c

G . (19)

Note that a subset of these transformations includes 180-deg
tations about any of the three material axes. Also note that s
2P( i )56aa6bb6cc, the set of invariantsI P( i )P( j ) with i, j
51 . . . 4 that includes ten members can be reduced to a sma
set of invariantsI a5aT

•C•a, I b5bT
•C•b, I c5cT

•C•c, I ab5aT

•C•b, I ac5aT
•C•c, I bc5bT

•C•c that only has six members.
SinceWbulk is isotropic, its value is invariant toH1 . On inspec-

tion Wrepulsion is also invariant to H1 because Wrepulsion

5Ŵrepulsion(I a ,I b ,I c) using the reduced set of invariants andI a ,
I b , andI c are invariant toH1 . To consider the effect onWentropy,
note that H1 effectively relabels the chains~1!–~4! given in
Eq. ~9!. For example, the particular transformationH1(a,b,c)
SEPTEMBER 2002, Vol. 69 Õ 573
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5(a,2b,c) relabels the chains as follows:H1P(1)5P(3), H1P(2)

5P(4), H1P(3)5P(1), H1P(4)5P(2). Similar relations will hold
for all other allowable transformations. SinceWentropyis dependent
on each of the deformed chain lengths in the same way, the ch
can be reordered without affectingWentropy, and thus this term and
the strain energy functionW as a whole are invariant toH1 . As
such, this material model is applicable fororthotropic materials.

4 Examples
To explore the response of a material with the above cons

tive law to various modes of deformation, the Cauchy stress
sor is calculated from the strain energy function. Towards this e
the second Piola-Kirchhoff stress tensorT̃5]W/]E is given by

T̃jk5
nkQ

4 F(
i 51

4
Pj

~ i !Pk
~ i !

r~ i ! br
~ i !2

bP

AN
S a2

la
2 ajak1

b2

lb
2 bjbk

1
c2

lc
2 cjckD G1

B

a
sinh@a~J21!#

]J

]Ejk
(20)

where

]J

]Ejk
5

e jyz

J
d1kCy2Cz31

ex jz

J
Cx1d2kCz31

exy j

J
Cx1Cy2d3k ,

(21)

e i jk is a component of the permutation tensor, andd i j is a com-
ponent of the second order identity tensor. The Cauchy stress
sor T can be calculated from the second Piola-Kirchhoff str
tensor as

T5
1

J
FT̃FT (22)

whereF is the deformation gradient.
For the following analytic studies the principal material ax

will be aligned with the coordinate axesX1 , X2 , andX3 . Small
volume changes will be assumed and thusa, the material param-
eter that governs the hydrostatic pressure versus volume curv
for large volume changes, is set equal to unity. Additionally,
deformations will all be triaxial deformation~no shear! such that
the deformation gradient is

F5F l1 0 0

0 l2 0

0 0 l3

G . (23)

Accordingly, the Cauchy stresses are

T115
nkQa2

4J Fl1
2br

r
2

bP

AN
G1B sinh~J21!

T225
nkQb2

4J Fl2
2br

r
2

bP

AN
G1B sinh~J21!

T335
nkQc2

4J Fl3
2br

r
2

bP

AN
G1B sinh~J21! (24)

wherer5Aa2l1
21b2l2

21c2l3
2/2 andbr and bP are as defined

before.

4.1 Uniaxial Deformation. The above equations can b
used to predict the model’s response in uniaxial tension by se
T225T3350 and solving those two coupled equations for t
transverse stretchesl2 and l3 given an applied stretchl1 . An
efficient way of solving for these stretches is to introduce two n
variables,

X5b2l2
21c2l3

2
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Y5b2l2
22c2l3

2. (25)

The constitutive equationsT2250 andT3350 from Eq.~24! can
then be decoupled by takingT221T3350 andT222T3350, giving

T221T335
nkQ

4J FXbr

r
2

~b21c2!bP

AN
G12B sinh~J21!50

T222T335
Ybr

r
2

~b22c2!bP

AN
50 (26)

where J5l1AX22Y2/2bc and r5Aa2l1
21X/2. The equation

T222T3350 can be manipulated to give

Y~X!5
bP~b22c2!r

brAN
(27)

and the equationT221T3350 can then be solved forX. The trans-
verse stretches are calculated to bel25A(X1Y)/2b2 and l3

5A(X2Y)/2c2.
Using the above formulation, the predicted response of the c

stitutive law under uniaxial tension is shown in Fig. 4 for tw
different sets of aspect ratios:~1! a52, b53, c54; and ~2! a
51.8, b53.124,c54. Simulations were performed for uniaxia
deformation along each of the three coordinate axes, denotedX1 ,
X2 , andX3 in the figure. All simulations were performed usin
n58•1024/m3, N57.25, andB51 MPa. From this figure, it is
apparent that nonunity aspect ratios give rise to an orthotro
response since for a given set of aspect ratios the deformatio
stiffest along the direction with the longest dimension~X3 for
these simulations! and most compliant along the direction with th
smallest dimension (X1). Additionally, holding the locking stretch
constant while increasing the value of one of the unit cell dim
sions~a! stiffens the response of the material in that direction (X1)
while making the response in the transverse direction (X2) whose
dimension~b! was decreased more compliant. Sincec was held
constant for the two sets of simulations, the response in theX3
direction did not noticeably change.

Fig. 4 Response of the orthotropic eight-chain model to
uniaxial deformation in each of three directions „X1 ,X2 ,X3… for
two sets of aspect ratios: „1… aÄ2, bÄ3, cÄ4, and „2… aÄ1.8,
bÄ3.124, cÄ4. The material axes are mutually orthogonal
and aligned with the coordinate axes. All simulations were
performed using parameters nÄ8"1024Õm3, NÄ7.25, and
BÄ1 MPa.
Transactions of the ASME



e

i
n

b
d

d

e
lied
sts on
tio
i-
o-

lane

-

the

bi-

own

f

s the
h.
The anisotropic hyperelastic mechanical response of biolog
soft tissue such as skin and heart tissue is often attributed to
underlying collagenous network in the tissue~@2,26,27#! and thus
the microstructural model developed here is readily applicabl
modeling the mechanical behavior of these materials. Acco
ingly, the model was used to fit data taken from in vitro uniax
tests on rabbit skin in which lateral contraction was constrai
~@1#!, the results are shown in Fig. 5. The tests were perform
along two mutually orthogonal material directions~X1 and X2!.
Prior to testing the specimens were allowed to completely re
~@1#! and thus the orthotropy of the response is solely due
material orthotropy. In the figure, data are represented by sym
and the theory by solid lines. The parameters used to fit the
are n53.75•1022/m3, N51.25, B550 kPa, a51.37, b51.015,
and c51.447. Sincea.b the fibers are preferentially aligne
along theX1-axis, resulting in a stiffer response and earlier loc
ing in that direction as compared to theX2-direction.

Fig. 5 Data from uniaxial tests on rabbit skin from Lanir and
Fung †1‡ and the corresponding fits using the orthotropic
model. Data are represented by symbols and the fits by solid
lines. The parameters used to fit the data are nÄ3.75"1022Õm3,
NÄ1.25, BÄ50 kPa, aÄ1.37, bÄ1.015, and cÄ1.447.
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4.2 Biaxial Deformation. Biaxial deformation analyses ar
conducted in which the material axes are aligned with the app
loads such that there are no shear stresses. Recent biaxial te
aortic valve cusps~@28#! have been conducted at a constant ra
Fr of the applied forces in two mutually orthogonal material d
rections with no applied force in the third direction and this pr
tocol will be followed here. The applied loadsF15T11A23

0 l2l3

andF25T22A13
0 l1l3 ~whereA23

0 andA13
0 are the initial values of

the corresponding cross-sectional areas! are controlled and related
to each other by the ratioFr5F2 /F1 and the stretchesl1 andl2
in the directions of the applied stresses as well as the out-of-p
stretchl3 must be calculated.

The three constitutive equations

f 15
nkQa2A23

0

4 Fbl1
2

r
2

bP

AN
G1BJA23

0 sinh~J21!2F1l150

f 25
nkQb2A13

0

4 Fbl2
2

r
2

bP

AN
G1BJA13

0 sinh~J21!2FrF1l250

f 35
nkQc2A12

0

4 Fbl3
2

r
2

bP

AN
G1BJA12

0 sinh~J21!50 (28)

are numerically solved simultaneously for the stretchesl1 , l2 ,
andl3 , given a value ofF1 . A modified Newton-Raphson algo
rithm was used that requires the derivatives ofl j with respect to
f i in order to estimate the stretches at each step according to
relations

l j
~ i 11!5l j

~ i !1S ]l j

] f k
D ~ i !

@ f k
~ i 11!2 f k

~ i !#e (29)

wheree,1 is a relaxation parameter used to avoid overshoot.
The above algorithm was used to simulate load-controlled

axial tension for various values of the stress ratioFr assuming all
initial cross-sectional areas to be equal to unity; results are sh
in Fig. 6. All parameters other thanFr were held constant in the
simulations:n58•1024/m3, N52, B540 MPa, a51.2, b51.5,
andc52.076. Figure 6~a! shows theT11 versusl1 response and
Fig. 6~b! shows theT22 versusl2 response for a given value o
Fr . For larger values ofFr , the response in theX2-direction
becomes more compliant and locks at a higher stretch wherea
response in theX1-direction stiffens and locks at a smaller stretc
Fig. 6 Simulations of load-controlled biaxial tension for various values of the load ratio Fr . Other parameters in
the simulations were fixed: nÄ8"1024Õm3, NÄ2, BÄ40 MPa, aÄ1.2, bÄ1.5, and cÄ2.076. Figure 6 „a… shows the
T11 versus l1 response and Fig. 6 „b… shows the T22 versus l2 response for a given value of Fr .
SEPTEMBER 2002, Vol. 69 Õ 575
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Of particular interest are the simulations forFr52 and 5 where
l1 initially decreases below unity, meaning the sample contra
in theX1-direction. However, as the stresses increasel1 begins to
increase, reaching values greater than unity for larger stres
This same phenomenon is observed in theX2-direction whenFr
50.5 and is a consequence of the orthotropy of the material a
isotropic material would not show similar behavior.

The orthotropic behavior shown in Fig. 6 is qualitatively simil
to data obtained from equibiaxial tension tests on fresh
glutaraldehyde-fixed aortic valve cusps performed by Billiar a
Sacks @28#. This tissue is known to possess an anisotro
microstructure due to the preferred orientation of constituen
bers. Though the investigators attempted to align the test a
with the principal material axes, test results showed nontriv

Fig. 7 Equibiaxial tension data from Billiar and Sacks †28‡
and corresponding fits using the orthotropic model. Data are
plotted as symbols and represent the constitutive response
for fresh and glutaraldehyde-fixed aortic valve cusp samples
in the two material directions in which loads were applied.
Fits are plotted as lines and were generated using the follow-
ing parameters: for fresh tissue data, nÄ6"1017Õm3, NÄ1.96,
BÄ100 kPa, aÄ2.05, bÄ1.7, and cÄ0.865; for fixed tissue
data, nÄ7"1017Õm3, NÄ1.48, BÄ500 kPa, aÄ1.85, bÄ1.35,
and cÄ0.822.
576 Õ Vol. 69, SEPTEMBER 2002
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shear strains which could be due to off-axis mounting~@28#! or
material heterogeneity within the samples being tested. Ne
theless, the orthotropic model developed here was used t
representative data from Billiar and Sacks assuming equibia
tension, homogeneity of the tissue samples, and perfect alignm
of the test axes with the material axes. Data and fits are sh
in Fig. 7 for fresh tissue and fixed tissue~data are shown with
symbols and fits are shown with lines!. Parameters used fo
the fits are as follows: for fresh tissue data,n56•1017/m3,
N51.96, B5100 kPa,a52.05, b51.7, andc50.865; for fixed
tissue data, n57•1017/m3, N51.48, B5500 kPa, a51.85,
b51.35, andc50.822. Given the assumptions used to model
data, the qualitative agreement between the data and the theo
good; better results would likely be obtained with informatio
about the shear strains present in the tests.

5 Finite Element Simulations
The constitutive law was incorporated into ABAQUS/Standa

Version 5.8, a commercially available finite element softwa
package produced by Hibbitt, Karlsson & Sorensen, Inc.@29#, for
simulation of more complex problems. A nonlinear orthotrop
hyperelastic constitutive law can be incorporated into ABAQU
using the user subroutine UMAT, which allows the most flexibili
in the material response. Needed in this subroutine are calc
tions for any given deformation gradient of the Cauchy stres
and the derivatives of the Cauchy stresses with respect to
Lagrangian strains. A 15-term series representation of the
verse Langevin function was used to save computational t
in calculating these values and to avoid problems associ
with the argument of the inverse Langevin function being grea
than unity, for which values the inverse Langevin function
not defined.

To verify the incorporation of the constitutive law int
ABAQUS ~especially in view of possible convergence problem
in the finite element code!, single element simulations of uniaxia
tension and biaxial tension were performed and compared to
numerical solutions. A single eight-noded three-dimensional lin
brick element was used and the deformations were prescribe
assigning loads to individual nodes. Figure 8 shows comparis
between the finite element simulations and the numerical solut
for uniaxial tension using parametersn52•1024/m3, N53, a
52, b52.5,c51.32, andB51 MPa. Figure 8a shows the stress-
stretch response and Fig. 8~b! shows the variations of the trans
Fig. 8 Finite element simulations „using a single linear brick element … and numerical simulations of uniaxial
tension. Parameters used for the simulations are nÄ2"1024Õm3, NÄ3, aÄ2, bÄ2.5, cÄ1.32, and BÄ1 MPa. Figure
8„a… shows the stress-stretch response in the direction of the applied load and Fig. 8 „b… shows the variations of
the transverse stretches l2 and l3 as functions of the applied stretch l1 .
Transactions of the ASME



Journal
Fig. 9 Finite element simulation „using a single linear brick element … and numerical simulation of load-
controlled biaxial tension. Parameters used for the simulations are nÄ2"1024Õm3, NÄ2.5, aÄ1.8, bÄ2, c
Ä1.66, and BÄ1 MPa. The ratio of the applied loads was fixed at FrÄF2 ÕF1Ä5. Figure 9 „a… shows the load-
stretch responses in the directions of the applied loads and Fig. 9 „b… shows the variation of the transverse
stretch l3 as a function of the stretch l1 . The inset in Fig. 9 shows the constitutive responses closer to zero
deformation.
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verse stretches with the stretch in the direction of the deformat
The finite element simulation for this deformation is very accur
at all values of the stretches.

A comparison of finite element simulations and numeri
simulations of load-controlled biaxial tension is shown in Fig.
Parameters used for these simulations aren52•1024/m3, N
52.5, a51.8, b52, c51.66, andB51 MPa. The ratio of the
applied loads was fixed atFr5F2 /F155. Figure 9~a! shows the
load-stretch responses in the directions of the applied loads
Fig. 9~b! shows the variation of the stretchesl2 andl3 as func-
tions of the stretchl1 . The inset in Fig. 9 shows the constitutiv
responses closer to zero deformation. Excellent agreement
tween the finite element simulations and the numerical sim
tions is again seen throughout the deformation.

Though the ability of the finite element code to converge to
correct solution is excellent for the two cases described ab
other simple homogeneous deformations can be problematic
pending on the values of the parameters being used. For exam
for a very large bulk modulus~B@Cr where Cr5nkQ is the
rubbery modulus!, convergence of the finite element code f
simple homogeneous tests such as uniaxial tension required
cessive relaxations of the convergence criteria used by ABAQ
as the simulation progressed towards the strain hardening~lock-
ing! region. The accuracy of the uniaxial stress-strain respons
not compromised for these simulations; however, the predicti
by the finite element simulations of the transverse strains g
progressively worse as these strains affected the stresses onl
minor way. Similar results have been found when simulating
drostatic compression; with orthotropic material parametersa
ÞbÞc) a sample should deform orthotropically but this is n
realized in finite element simulations because the orthotro
strains affect the hydrostatic stress in an insignificant way.

To test the ability of ABAQUS to simulate a more comple
problem using the orthotropic hyperelastic constitutive law
three-dimensional model was created with two distinct orien
tions of the principal material axes. The domain size is
mm320 mm30.1 mm with an element density of 493731 eight-
noded brick elements. Parameters used in the simulations an
52•1024/m3, N51.1, a51.4, b51.0, c51.2, andB51 MPa.
The nodes atX50 mm andX550 mm were constrained from
moving in theY-direction and the nodes atX550 mm were addi-
tionally given a displacement in the positiveX-direction with the
of Applied Mechanics
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nodes atX50 mm constrained from moving in theX-direction
~constrained uniaxial extension!. Two different orientations of the
principal material axes were simulated: one in whicha was fixed
at a 30-deg orientation throughout the domain~Fig. 10~a!! and
one in which a sinusoidal variation of the orientation ofa was

Fig. 10 Simulation of constrained uniaxial simulation in which
a is initially fixed at a 30-deg orientation throughout the domain
„Fig. 10 „a……. Parameters used in the simulation are nÄ2
"1024Õm3, NÄ1.1, aÄ1.4, bÄ1.0, cÄ1.2, and BÄ1 MPa. Figures
10„b–d…, corresponding to the global stress-stretch states
marked „b…–„d…, respectively, in Fig. 12, show deformed
meshes with contours of the stress s11 „kPa…. Contour lines are
shown in increments of 3 kPa, 10 kPa, and 15 kPa for Figs.
10„b…, 10„c…, and 10 „d…, respectively.
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prescribed such that the initial orientation atX50 mm andX
550 mm is 30-deg and the initial orientation atX525 mm is230
deg ~Fig. 11~a!!. In both cases, the orientation ofb was always
locally orthogonal toa in the plane, andc was always oriented
perpendicular to the plane. The condition of strong ellipticity w
upheld throughout these simulations as the local Jacobian mat
extracted from the simulation results at various spatial locati
and deformations were verified to be positive definite.

Figures 10~b–d! and 11~b–d! show deformed meshes with con
tour plots of s11 ~units of kPa! for the two simulations at the
global stress-stretch states marked with filled symbols and lab
~b!–~d! in Fig. 12. Contour lines in Figs. 10~b–d! and 11~b–d! are
shown in increments of 10 kPa, 50 kPa, and 300 kPa. All of
plots show nonsymmetric deformations and stress distribut
about the vertical centerline initially located atX525 mm. For
simulations with constant fiber orientation the material is initia
slightly drawn in in both theY-direction and theZ-direction ~re-
sults not shown here!. At larger deformations the material expan
in the Y-direction ~Figs. 10~b–d!! while continuing to contract in
the Z-direction. The expansion in theY-direction is more pro-
nounced on the left side of the top edge~Y520 mm in the unde-
formed configuration! as compared to the right side; this is r
versed on the lower edge~Y50 mm in the undeformed
configuration!. This asymmetry is due to the constant skewed fi
orientation. In Figs. 11~b–d! there is contraction in theY-direction
~as well as in theZ-direction! at all deformations; along the to
edge the material contracts to a greater degree near the right
of the sample as compared to the left side as a consequence
fiber orientation.

At each of the three deformation states, the overall stress l
in Figs. 11~b–d! is lower than that in the corresponding plot
Figs. 10~b–d!. However, the peak stresses are higher in Fi
11~b–d! than in Figs. 10~b–d! ~in both cases the peak stresses
located in the upper left and lower right corners of the model!. As
a result, regions in Fig. 11 will lock at smaller values of the glob

Fig. 11 Simulation of constrained uniaxial simulation in which
the initial orientation of a varies sinusoidally with X „Fig. 11 „a…….
Parameters used in the simulation are the same as for the
simulation in Fig. 10. In Figs. 11 „b–d… the contour definitions
and corresponding locations on the global stress-stretch curve
„Fig. 12 … are the same as for the simulation in Fig. 10.
578 Õ Vol. 69, SEPTEMBER 2002
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stretch than the same regions in Fig. 10. Thus, a constant
orientation results in a globally stiffer material but one wi
smaller local peak stresses.

Figure 12 shows nominal stress~in the X-direction! versus
stretch relations extracted from the simulation results. The fil
symbols represent the deformation states at which contour p
are drawn in Figs. 10 and 11. Nominal stress was determined
summing the forces~in the X-direction! on the end nodes~at X
50 mm! and dividing by the initial cross-sectional area~2 mm2!;
stretch was calculated by dividing the deformed length of
mesh by the undeformed length~50 mm!. Though the same pa
rameters were used for both simulations, the gross response o
simulation with constant fiber orientation was stiffer than that w
varying fiber orientation. This supports what was previously se
in Figs. 10~b–d! and 11~b–d!, that the overall stresses at a give
stretch are higher in the simulation with constant fiber orientat
than in the simulation with varying fiber orientation.

6 Conclusions
A finite deformation orthotropic hyperelastic constitutive la

has been developed based on the statistical mechanics of m
molecules. In addition to the local orientation of the princip
material axes, only five material parameters are necessary to
this model to characterize a nearly incompressible orthotropic
terial: densityn of the constituent molecular chains, aspect rat
a, b, and c of the representative unit cell, and bulk modulusB.
From the aspect ratios the locking stretchN of the constituent
chains can be determined. The chain parameters and unit ce
mensions can be related to directly measurable physical prope
such as the fiber length, density, and orientation. This model
been shown to successfully predict an orthotropic material
sponse in uniaxial and biaxial tension and has been incorpor
into ABAQUS for simulation of more complex boundary valu
problems.
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A Surface Crack in a Graded
Medium Under General Loading
Conditions
In this study the problem of a surface crack in a semi-infinite elastic graded me
under general loading conditions is considered. It is assumed that first by solving
problem in the absence of a crack it is reduced to a local perturbation problem
arbitrary self-equilibrating crack surface tractions. The local problem is then solved
approximating the normal and shear tractions on the crack surfaces by polynomials
the normalized modes I and II stress intensity factors are given. As an exampl
results for a graded half-plane loaded by a sliding rigid circular stamp are presente
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1 Introduction
Graded materials, also known asfunctionally graded materials

~FGMs! are generally multiphase composites with continuou
varying thermomechanical properties. Used as coatings and i
facial zones they tend to reduce stresses resulting from the m
rial property mismatch, increase the bonding strength, improve
surface properties and provide protection against severe the
and chemical environments. Thus, the concept of grading the t
momechanical properties of materials provides the material sc
tists and engineers with an important tool to design new mate
having highly favorable properties in certain specific applicatio
~@1–6#!.

To take full advantage of this new tool research is needed
only for developing efficient material processing and character
tion techniques but also for carrying out basic studies relating
the safety and durability of FGM components. Typical current a
potential applications for this new class of materials include th
mal barrier coatings and abradable seals in gas turbines, pre
tion of wear-resistant surfaces in load transfer components suc
gears, bearings, cams and machine tools, various interlaye
microlectronic and optoelectronic devices, high-speed graded
dex polymer optical fibers, impact resistant components, and t
moelectric cells~Miyamoto et al.@6#!.

The primary interest in this study is in initiation and propag
tion of surface cracks in graded materials. Initially it is assum
that the conditions of crack initiation on the surface of the u
cracked graded medium have been met and a surface crac
been initiatiated. Since the material on the surface of FGM
generally 100 percent ceramic and consequently rather brittle,
can be verified by applying a simple maximum tensile stress
terion. The main problem is, therefore, that of a surface cr
subjected to general mixed-mode loading conditions. The co
sponding mode I problem was considered by Erdogan and
@7,8#. The more general mode I problem of a graded layer bon
to a homogeneous substrate was studied by Kasmalkar@9#. The
interface crack problem for graded coatings under antiplane s
loading is studied by Jin and Batra@10# by assuming an exponen
tial variation in elastic properties. The power-law variation in t
elastic properties of graded materials is considered by Wang e
@11#. A moduli-perturbation approach is used by Gao@12# for the

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr.
2001; final revision, Nov. 14, 2001. Associate Editor: H. Gao. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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fracture analysis of nonhomogeneous materials. Wang et al.@13#
and Nozaki and Shindo@14# developed a multilayered interfacia
zone model to simulate the arbitrarily varying properties
FGMs. In addition to the references cited in@1–14#, the review
articles@15,16# may be of particular interest.

2 Formulation of the Problem
The geometry of the crack problem is shown in Fig. 1. T

graded half-plane contains a surface crack of lengthd. The crack
surfaces are assumed to be subjected to general mixed-mode
ing. Because of the fact that main results of the crack problem
graded materials are rather insensitive to the variations in P
son’s ratio, in this study it is assumed that the elastic propertie
the medium may be approximated by

m~x!5m0 exp~gx!, (1a)

k5constant, (1b)

wherem is the shear modulus,g is a nonhomogeneity paramete
k5324n for plane strain andk5~32n!/~11n! for generalized
plane stress,n being the Poisson’s ratio. By using the Hooke’s la

sxx~x,y!5
m~x!

k21 H ~k11!
]u

]x
1~32k!

]v
]yJ , (2a)

syy~x,y!5
m~x!

k21 H ~k11!
]v
]y

1~32k!
]u

]xJ , (2b)

sxy~x,y!5m~x!H ]u

]y
1

]v
]xJ (2c)

the equilibrium conditionss i j , j50 can be expressed as

~k11!
]2u

]x2 1~k21!
]2u

]y2 12
]v

]x]y
1g~k11!

]u

]x
1g~32k!

]v
]y

50, (3a)

~k11!
]2v
]y2 1~k21!

]2v
]x2 12

]2u

]x]y
1g~k21!

]v
]x

1g~k21!
]u

]y

50. (3b)

Equations~3! must be solved under the following external load

sxx~0,y!50, sxy~0,y!50, 2`,y,`, (4a)

syy~x,0!52p~x!, sxy~x,0!52q~x!, 0,x,d, (4b)

s i j ~x,y!→0 as ~x21y2!→`, ~ i , j 5x,y!, (4c)
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where p(x) and q(x) are the crack surface tractions which a
obtained from the solution of the original problem in the abse
of the crack. We observe that the unknown functions that
convenient in this problem are the derivatives of the relative cr
opening displacements defined by

2m0

k11

]

]x
~v~x,10!2v~x,20!!5 f 1~x!, 0,x,d, (5a)

2m0

k11

]

]x
~u~x,10!2u~x,20!!5 f 2~x!, 0,x,d. (5b)

2.1 The Opening Mode Problem. In the graded half-plane
problem having a symmetry with respect to they50 plane in
geometry and material property distribution, the mode I~or the
opening mode! and mode II~or the sliding mode! problems turn
out to be uncoupled. Therefore, the problems may be formula
separately. Furthermore, the solution to each problem may be
pressed as the sum of two solutions, namely the infinite med
with a crack and a half-planex.0 without a crack.

We consider first the infinite medium with a crack. Defining t
displacements by

u1
~ i !~x,y!5

1

2p E
2`

`

U1
~ i !~v,y!exp~ ivx!dv, (6a)

v1
~ i !~x,y!5

1

2p E
2`

`

V1
~ i !~v,y!exp~ ivx!dv, (6b)

from Eq. ~3! it follows that

~k21!
d2U1

~ i !

dy2 1~k11!~g iv2v2!U1
~ i !1~2iv1g~32k!!

dV1
~ i !

dy

50, (7a)

~2iv1g~k21!!
dU1

~ i !

dy
1~k11!

d2V1
~ i !

dy2 1~k21!~g iv2v2!V1
~ i !

50 (7b)

where superscripti and subscript 1 refer to infinite medium an
opening mode problem, respectively. Assuming the solution
Eq. ~7! in the form exp(ny), the characteristic equation, its root
and the displacements are found to be

~n22d1n1 iv~g1 iv!!~n21d1n1 iv~g1 iv!!50, (8a)

d15gA32k

k11
, (8b)

n152
1

2
d11

1

2
A4v224ivg1d1

2, R~n1!.0, (9a)

n25
1

2
d11

1

2
A4v224ivg1d1

2, R~n2!.0, (9b)

n352
1

2
d12

1

2
A4v224ivg1d1

2, R~n3!,0, (9c)

Fig. 1 Surface crack in a graded medium
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n45
1

2
d12

1

2
A4v224ivg1d1

2, R~n4!,0, (9d)

u1
~ i 2!~x,y!5

1

2p E
2`

`

(
j 51

2

Cj~v!exp~njy1 ivx!dv,

(10a)

v1
~ i 2!~x,y!5

1

2p E
2`

`

(
j 51

2

Cj~v!Aj~v!exp~njy1 ivx!dv,

(10b)

for y,0, and

u1
~ i 1!~x,y!5

1

2p E
2`

`

(
j 53

4

Cj~v!exp~njy1 ivx!dv,

(11a)

v1
~ i 1!~x,y!5

1

2p E
2`

`

(
j 53

4

Cj~v!Aj~v!exp~njy1 ivx!dv,

(11b)

for y.0. In Eqs.~10! and~11! Cj (v), ( j 51,2,3,4) are unknown
andAj are given by

Aj~v!52
nj

2~k21!1~ ivg2v2!~k11!

nj~2iv1g~32k!!
, ~ j 51,2,3,4!.

(12)

Consider now the half-plane problem forx.0 without the crack.
By observing that the problem has a symmetry with respect ty
50 plane the solution may be expressed as

u1
~h!~x,y!5E

0

`

U1
~h!~x,a!cos~ay!da, (13a)

v1
~h!~x,y!5E

0

`

V1
~h!~x,a!sin~ay!da, (13b)

where superscripth and subscript 1 refer to the half-plane and t
opening mode, respectively. From Eqs.~3! and~13! it follows that

~k11!
d2U1

~h!

dx2 1g~k21!
dU1

~h!

dx
2a2~k21!U1

~h!12a
dV1

~h!

dx

1g~32k!V1
~h!50, (14a)

2a
dU1

~h!

dx
1ga~k21!U1

~h!2~k21!
d2V1

~h!

dx2 2g~k21!
dV1

~h!

dx

1a2~k11!V1
~h!50. (14b)

Assuming the solution for Eq.~14! of the form exp(px), we find

~p21gp2a22 iad1!~p21gp2a21 iad1!50, (15)

p152
1

2
g1

1

2
Ag214a214iad1, R~p1!.0, (16a)

p252
1

2
g1

1

2
Ag214a224iad1, R~p2!.0, (16b)

p352
1

2
g2

1

2
Ag214a214iad1, R~p3!,0, (16c)

p452
1

2
g2

1

2
Ag214a224iad1, R~p4!,0, (16d)

u1
~h!~x,y!5E

0

`

~B3 exp~p3x!1B4 exp~p4x!!cos~ay!da,

(17a)
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v1
~h!~x,y!5E

0

`

~B3D3 exp~p3x!1B4D4 exp~p4x!!sin~ay!da,

(17b)

D j52
pj

2~k11!1a2~12k!1gpj~11k!

a~2pj1g~32k!!
, ~ j 53,4!

(18)

whered1 is given by Eq.~8b! andB3(a) andB4(a) are unknown
functions. We now express the solution of the mode I problem
follows:

u1~x,y!5u1
~ i !~x,y!1u1

~h!~x,y!, (19a)

v1~x,y!5v1
~ i !~x,y!1v1

~h!~x,y!, (19b)

sk j1~x,y!5sk j1
~ i ! ~x,y!1sk j1

~h! ~x,y!, ~k, j 5x,y! (19c)

where displacements are given in terms of six unknown functi
C1 , . . . ,C4 , B3 , B4 which are determined from the following si
conditions:

sxx1~0,y!50, (20a)

sxy1~0,y!50, 2`,y,`, (20b)

syy1~x,10!5syy1~x,20!, (21a)

sxy1~x,10!5sxy1~x,20!, 0,x,`, (21b)

u1~x,10!5u1~x,20!, 0,x,`, (22)

syy1~x,0!52p~x!, 0,x,d, (23a)

v1~x,10!5v1~x,20!, d,x,`. (23b)

The homogeneous conditions~20!–~22! may be used to eliminate
five of the unknown functions. The mixed boundary conditio
~23! would then determine the sixth unknown.

By using the definitions given by Eq.~5!, observing that for the
mode I problem under considerationf 2(x)50 andq(x)50, re-
placing the condition~23a! by ~5a!, and substituting from~10!,
~11!, ~17!, ~19!, and ~2! into ~20!–~23!, we obtain the following
expressions givingC1 , . . . ,C4 , B3 , B4 in terms of f 1(x):

Cj~v!5
k11

2m0
Pj~v!E

0

d

f 1~ t !exp~2 ivt !dt, (24a)

(
j 53

4

~ iv~32k!1Ajnj~11k!!Pj~v!2(
j 51

2

~ iv~32k!

1Ajnj~11k!!Pj~v!50, (24b)

(
j 53

4

~nj1 ivAj !Pj~v!2(
j 51

2

~nj1 ivAj !Pj~v!50, (24c)

ivH(
j 53

4

Aj Pj~v!2(
j 51

2

Aj Pj~v!J 51, (24d)

P4~v!1P3~v!2P2~v!2P1~v!50, (24e)

E
0

`

(
j 53

4

~~k11!pj1D ja~32k!!Bj~a!cos~ay!

1
1

2p E
2`

`

(
j 53

4

~ iv~k11!1Ajnj~32k!!Cj~v!

3exp~njy!dv50, 0,y,`, (25a)
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E
0

`

(
j 53

4

~D j pj2a!Bj~a!sin~ay!1
1

2p E
2`

`

(
j 53

4

~nj

1 ivAj !Cj~v!exp~njy!dv50, 0,y,` (25b)

where f 1(x) is the new unknown function which is determine
from Eq. ~23a!. Because of symmetry in this problem it is suffi
cient to consider 0,y,` only. Evaluating some of the integral
in closed form by using the theory of residues, Eqs.~25! may be
reduced to

(
j 53

4

~~k11!pj1D ja~32k!!Bj* ~a,t !5Rxx1~a,t !, (26a)

(
j 53

4

~D j pj2a!Bj* ~a,t !5Rxy1~a,t !, (26b)

where

Bj~a!5
k11

2m0
E

0

d

Bj* ~a,t !expS S g

2
2l1D t D f 1~ t !dt, (27)

andRxx1 , Rxy1 , andl1 are given in Appendix A.

2.2 The Sliding Mode Problem. Referring to Fig. 1, in this
section it is assumed thaty50 is a plane of antisymmetry. Con
sequently, in Eq.~4! p(x)50 and in Eq.~5! f 1(x)50. Thus, fol-
lowing a procedure similar to that of Section 2.1, the displa
ments for the graded infinite medium with a crack along thex-axis
may be written as

u2
~ i 2!~x,y!5

1

2p E
2`

`

(
j 51

2

Ej~v!exp~njy1 ivx!dv,

(28a)

v2
~ i 2!~x,y!5

1

2p E
2`

`

(
j 51

2

Ej~v!Aj~v!exp~njy1 ivx!dv,

(28b)

for y,0 and

u2
~ i 1!~x,y!5

1

2p E
2`

`

(
j 53

4

Ej~v!exp~njy1 ivx!dv,

(29a)

v2
~ i 1!~x,y!5

1

2p E
2`

`

(
j 53

4

Ej~v!Aj~v!exp~njy1 ivx!dv,

(29b)

for y.0. In Eqs.~28! and ~29! E1(v), . . . ,E4(v) are unknown
andnj andAj are given by Eqs.~9! and ~12!, respectively. Simi-
larly, the general solution for the graded half-planex.0 under
antisymmetric loading conditions may be expressed as

u2
~h!~x,y!5E

0

`

~G3~a!exp~p3x!1G4~a!exp~p4x!!sin~ay!da,

(30a)

v2
~h!~x,y!5E

0

`

~G3~a!H3~a!exp~p3x!

1G4~a!H4~a!exp~p4x!!cos~ay!da (30b)

whereG3(a) andG4(a) are unknown, the characteristic equatio
and its rootspj , ( j 51, . . . ,4) aregiven by Eqs.~18! and~19! and
H3(a) andH4(a) are

H j~a!5
gpj~k11!1a2~12k!1pj

2~k11!

a~2pj1g~32k!!
, ~ j 53,4!.

(31)
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We now express the displacements and stresses in the cra
half-plane under antisymmetric loading in terms of the followi
sums:

u2~x,y!5u2
~ i !~x,y!1u2

~h!~x,y!, (32a)

v2~x,y!5v2
~ i !~x,y!1v2

~h!~x,y!, (32b)

sk j2~x,y!5sk j2
~ i ! ~x,y!1sk j2

~h! ~x,y!, ~k, j 5x,y!. (33)

In the surface crack problem under antisymmetric loading
solution given by Eqs.~32! and ~33! must satisfy the following
boundary and continuity conditions:

sxx2~0,y!50, sxy2~0,y!50, 2`,y,`, (34)

syy2~x,10!5syy2~x,20!,

sxy2~x,10!5sxy2~x,20!, 0,x,`, (35)

v2~x,10!5v2~x,20!, 0,x,`, (36)

sxy2~x,0!52q~x!, 0,x,d, (37a)

u2~x,10!5u2~x,20!, d,x,`. (37b)

Again, by replacing Eq.~37a! by Eq. ~5b! and using the solution
given by Eqs.~28!–~31!, the conditions~34!–~37! may be reduced
to a system of equations expressing the unknown functi
Ej (v), ( j 51, . . . ,4), G3(a) and G4(a) in terms of the new
unknown functionf 2(x) as follows:

Ej~v!5
k11

2m0
Zj~v!E

0

d

f 2~ t !exp~2 ivt !dt, (38)

(
j 53

4

~ iv~32k!1Ajnj~11k!!Zj~v!

2(
j 51

2

~ iv~32k!1Ajnj~11k!!Zj~v!50, (39a)

(
j 53

4

~nj1 ivAj !Zj~v!2(
j 51

2

~nj1 ivAj !Zj~v!50, (39b)

(
j 53

4

AjZj~v!2(
j 51

2

AjZj~v!50, (39c)

iv$Z4~v!1Z3~v!2Z2~v!2Z1~v!%51. (39d)

E
0

`

(
j 53

4

~~k11!pj2H ja~32k!!Gj~a!sin~ay!

1
1

2p E
2`

`

(
j 53

4

~ iv~k11!1Ajnj~32k!!Ej~v!

3exp~njy!dv50, 0,y,`, (40a)

E
0

`

(
j 53

4

~H j pj1a!Gj~a!cos~ay!

1
1

2p E
2`

`

(
j 53

4

~nj1 ivAj !Ej~v!exp~njy!dv50,

0,y,`. (40b)

In this problem, too, because of symmetry it is sufficient to co
sidery.0 half of the medium only. Also, by evaluating some
the integrals in closed form Eqs.~40a,b! may be reduced to

(
j 53

4

~~k11!pj2H ja~32k!!Gj* ~a,t !5Rxx2~a,t !, (41a)
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(
j 53

4

~H j pj1a!Gj* ~a,t !5Rxy2~a,t !, (41b)

where

Gj~a!5
k11

2m0
E

0

d

Gj* ~a,t !expS S g

2
2l1D t D f 2~ t !dt, (42)

andRxx2 , Rxy2 , andl1 are given in Appendix A.

3 The Integral Equations
By using the solution developed in Section 2 all stress a

displacement components can be expressed in terms off 1(x) and
f 2(x) with appropriate kernels. Specifically, observing that t
problem is uncoupled, using Eqs.~22! and ~36!, the conditions
~23a! and ~37a! which are yet to be satisfied may be written as

syy~x,0!5 lim
y→0

E
0

d

k11~x,y,t ! f 1~ t !dt52p~x!, 0,x,d,

(43)

sxy~x,0!5 lim
y→0

E
0

d

k22~x,y,t ! f 2~ t !dt52q~x!, 0,x,d,

(44)

where the kernelsk11 andk22 are given in Appendix B. Note tha
unlike the homogeneous half-plane, in the graded medium wi
surface crackk11(x,0,t) andk22(x,0,t) are not equal. The singula
nature of the integral Eqs.~43! and ~44! and that of the solutions
f 1 and f 2 may be determined by examining the asymptotic beh
ior of the integrandsKss

(r ) , ~r 5 i , h; s51,2! given in Appendix B.
After performing the necessary analysis the integral Eqs.~43! and
~44! may be reduced to

E
0

dF 1

p

1

t2x
1h11s~x,t !1h11f~x,t !G f 1~ t !dt

52exp~2gx!p~x!, 0,x,d (45a)

E
0

dF 1

p

1

t2x
1h22s~x,t !1h22f~x,t !G f 2~ t !dt

52exp~2gx!q~x!, 0,x,d (45b)

whereh11s andh22s are generalized Cauchy kernels~of the order
1/t! that become unbounded as the argumentsx and t tend to the
end point zero simultaneously. The limits of these singular kern
are found to be

lim
~x,t !→0

h11s~x,t !5 lim
g→0

h11s~x,t !

5 lim
~x,t !→0

h22s~x,t !

5 lim
g→0

h22s~x,t !

5
1

p S 1

t1x
1

2t

~ t1x!22
4t2

~ t1x!3D , 0,~ t,x!,d.

(46)

The expressions forhkks and hkk f , (k51,2) are given by Dag
@17#. It may be observed that~46! is the standard expression foun
for edge cracks in homogeneous materials~@17#!. Thus, the solu-
tion of the integral equations may be expressed as

f 1~x!5~d2x!21/2f 1* ~x!, 0,x,d, (47a)

f 2~x!5~d2x!21/2f 2* ~x!, 0,x,d, (47b)
SEPTEMBER 2002, Vol. 69 Õ 583
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where f 1* (x) and f 2* (x) are unknown bounded functions. No
that, there is no singularity at the crack mouthx50, y50 while
the standard square-root singularity is retained at the crack ti

4 On the Solution of the Integral Equations
The integral equations are solved by using a collocation te

nique. First the interval (0,d) in ~45! is normalized by defining

f i~ t !5f i~r !, i 51,2, 21,r ,1, (48a)

t5
d

2
r 1

d

2
, 0,t,d, 21,r ,1, (48b)

x5
d

2
s1

d

2
, 0,x,d, 21,s,1. (48c)

The solution may then be expressed as

f1~r !5~12r !21/2(
n50

`

A1nPn
~21/2,0!~r !, (49a)

f2~r !5~12r !21/2(
n50

`

A2nPn
~21/2,0!~r !, (49b)

wherePn
(21/2,0)(r ), 21,r ,1, are Jacobi polynomials. Substitu

ing ~49! in ~45!, truncating the infinite series atN and regularizing
the singular terms, the integral equations become

(
n50

N H 2
G~21/2!G~n11!

21/2pG~n11/2!
F~n11,2n11/2;3/2;~12s!/2!

1m11n~s!J A1n52exp~2gd~11s!/2!p~d~11s!/2!,

21,s,1, (50a)

(
n50

N H 2
G~21/2!G~n11!

21/2pG~n11/2!
F~n11,2n11/2;3/2;~12s!/2!

1m22n~s!J A2n52exp~2gd~11s!/2!q~d~11s!/2!,

21,s,1, (50b)

whereG~ ! is the Gamma function andF( ) is the hypergeometric
function. Expressions formkkn(s), (k51,2) are given in Appen-
dix B. Equations~50! are solved numerically using a collocatio
technique. The following roots of the Chebyshev polynomials
used as the collocation points:

sj5cosS p~2 j 21!

2~N11! D , j 51, . . . ,N11. (51)

After solving the integral equations forf 1 and f 2 stress inten-
sity factors at the crack tip (d,0) may be evaluated by using th
results. The stress intensity factors are defined by and calcu
from

k15 lim
x→d10

A2~x2d!syy~x,0!

52 lim
x→d20

2m~x!

k11
A2~d2x!

]

]x
~v~x,01!2v~x,02!!,

(52a)
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k25 lim
x→d10

A2~x2d!sxy~x,0!

52 lim
x→d20

2m~x!

k11
A2~d2x!

]

]x
~u~x,01!2u~x,02!!.

(52b)

From ~49! and ~52! it then follows that

k152exp~gd!Ad (
n50

N

A1nPn
~21/2,0!~1!, (53a)

k252exp~gd!Ad (
n50

N

A2nPn
~21/2,0!~1!. (53b)

5 Results and Discussion
The main results of this study are the variation of the str

intensity factors as functions of the material nonhomogeneity
rameterg. Some sample results are also obtained giving the cr
opening displacements. Assuming that in practical applications
crack surface tractions for the perturbation problem would be s
ficiently well-behaved continuous functions and may be appro
mated by fourth-degree polynomials with sufficient accuracy,
input functions may be expressed as

p~x!5(
n50

4

sn~x/d!n, (54a)

q~x!5(
n50

4

tn~x/d!n, (54b)

where the coefficientssn andtn are known constants. To facilitat
the application of the results, the normalized stress intensity
tors are given in Tables 1 and 2 in tabular form. In the tables
numerical results for the limiting case ofgd50 are obtained by
solving the mixed mode surface crack problem in a homogene
medium. As can be seen from the tables, for sufficiently sm
values of the nonhomogeneity parameter~i.e., ugdu51024! results
obtained for a graded medium are in agreement with the res
obtained from the homogeneous formulation up to the last sign
cant digit calculated. In the special case ofp(x)5s0 and q(x)
5t0 for ugdu→0 the convergence of the stress intensity fact
calculated for a graded medium to the known homogeneous
sultsk1 /(s0Ad)5k2 /(t0Ad)51.1215 is shown in Fig. 2 as wel
as in the Tables 1 and 2. ForgdÞ0 the problem does not have

Table 1 Normalized mode I stress intensity factors

gd

k1 /(snd1/2)

s0 s1(x/d) s2(x/d)2 s3(x/d)3 s4(x/d)4

23.0 4.4345 1.9324 1.2148 0.8897 0.7076
22.0 3.1238 1.4495 0.9525 0.7209 0.5879
21.0 1.9846 1.0196 0.7152 0.5663 0.4774
20.5 1.4988 0.8317 0.6099 0.4970 0.4274

21021 1.1802 0.6690 0.5387 0.4498 0.3932
21022 1.1259 0.6847 0.5265 0.4417 0.3873
21023 1.1220 0.6831 0.5256 0.4410 0.3869
21024 1.1215 0.6829 0.5255 0.4410 0.3868

0 1.1215 0.6829 0.5255 0.4410 0.3868
1024 1.1215 0.6829 0.5255 0.4410 0.3868
1023 1.1210 0.6827 0.5254 0.4409 0.3868
1022 1.1175 0.6812 0.5246 0.4404 0.3864
1021 1.0864 0.6690 0.5176 0.4358 0.3830

0.5 1.0225 0.6439 0.5035 0.4264 0.3763
1.0 0.9930 0.6328 0.4974 0.4225 0.3735
2.0 0.9807 0.6289 0.4956 0.4215 0.3729
3.0 0.9884 0.6329 0.4981 0.4233 0.3743
Transactions of the ASME
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closed-form solution and in the computer program one can
directly substitutegd50. Thus, the results given in Tables 1 an
2 and Fig. 2 indicate that to calculate the stress intensity facto
the limiting case ofgd50 one can usegd51024.

It should be pointed out that in a semi-infinite plane homo
neous elastic medium containing a surface crack of depthd and
subjected to uniform tension parallel to the surface~syy(x,7`)
5s0 , Fig. 1!, the closed-form solution for the stress intens
factork1(d) is given by Koiter@18# in terms of an infinite integral
as follows:

k1~d!

s0Ad
5A2~B11!

ApA
, (55)

log A52
1

p E
0

` 1

11a2 logS a sinh~pa!

AB21a2~cosh~pa!22a221!
D da

(56)

whereB is an arbitrary real constant greater than 1 and the re
is independent of the choice ofB. The numerical evaluation o
~55! and ~56! show that~Kaya and Erdogan@19#!

k1~d!

s0Ad
51.1215222671028. (57)

Fig. 2 Convergence of the numerical results for small values
of the nonhomogeneity parameter

Table 2 Normalized mode II stress intensity factors

gd

k2 /(tnd1/2)

t0 t1(x/d) t2(x/d)2 t3(x/d)3 t4(x/d)4

23.0 1.6704 0.9273 0.6738 0.5437 0.463
22.0 1.4765 0.8398 0.6202 0.5063 0.435
21.0 1.2825 0.7534 0.5678 0.4700 0.408
20.5 1.1940 0.7144 0.5443 0.4539 0.396

21021 1.1347 0.6885 0.5288 0.4433 0.3885
21022 1.1197 0.6825 0.5253 0.4409 0.3868
21023 1.1212 0.6828 0.5254 0.4410 0.3868
21024 1.1215 0.6829 0.5255 0.4410 0.3868

0 1.1215 0.6829 0.5255 0.4410 0.3868
1024 1.1215 0.6829 0.5255 0.4410 0.3868
1023 1.1216 0.6830 0.5255 0.4410 0.3868
1022 1.1233 0.6833 0.5256 0.4411 0.3869
1021 1.1094 0.6777 0.5224 0.4389 0.3853

0.5 1.0727 0.6620 0.5132 0.4327 0.380
1.0 1.0429 0.6497 0.5062 0.4280 0.377
2.0 1.0164 0.6397 0.5008 0.4245 0.374
3.0 1.0128 0.6394 0.5011 0.4249 0.375
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The result given by~57! was verified by Mahajan@20# by using an
entirely different method.

The calculated stress intensity factors for crack surface tract
~54! are also shown in Figs. 3 and 4. The figures are s
explanatory: as the material nonhomogeneity parameterg de-
creases, bothk1 andk2 tend to increase,k1 andk2 are much more
sensitive to the variations ing for g,0 ~for the ‘‘softening’’ ma-

Fig. 3 Normalized mode I stress intensity factors, kÄ2,
m„x …Äm0 exp „gx…

Fig. 4 Normalized mode II stress intensity factors, kÄ2,
m„x …Äm0 exp „gx…

Fig. 5 Normalized modes I and II stress intensity factors for
fixed grip tensile and shear loading, kÄ1.8, m„x …Äm0 exp „gx…,
sÄ8m0e0 Õ„k¿1…, tÄ8m0g0 Õ„k¿1…
SEPTEMBER 2002, Vol. 69 Õ 585
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terial! than forg.0, and generally for a giveng the amplitude of
k1 is greater than that ofk2 . Figure 5 shows the results for fixe
grip tensile (eyy(x,7`)5e0) and shear (gxy(x,7`)5g0) load-
ing. Note that as the nonhomogeneity parameterg increases, the
normalizedk2 ~dashed lines! monotonically increases, whereask1
goes through a minimum nearg50. The figure also shows th
mode I results for a graded half-plane under fixed grip loadinge0
obtained by Kasmalkar@9# ~full circles!. Not only is the agree-
ment quite good, also somewhat paradoxial result concerning
slight increase ink1 for g,0 is independently verified.

Figures 6 and 7 show the influence of the Poisson’s ration on
the modes I and II stress intensity factors in a graded half-pl
with a surface crack loaded by uniform crack surface tracti
p(x)5s0 and q(x)5t0 , respectively. As shown in the previou
studies, the effect ofn on k1 does not seem to be significan
However, particularly for large values ofg, the influence ofn on
k2 could be significant.

Figures 8–11 show some sample results for the normal
crack opening displacement. It may be observed that in all ca
as g increases~or as the stiffness of the medium increases!, the
crack opening displacements decrease, the influence ofg on the
crack opening displacement is more significant forg,0 than for
g.0, and generally forg,0 crack opening displacement und
mode I loading~s0 and s! is greater than that under mode

Fig. 6 The influence of Poisson’s ratio on the normalized
mode I stress intensity factor in a graded half-plane with a sur-
face crack; the case of plane strain, p „x …Äs0 , q „x …Ä0,
m„x …Äm0 exp „gx…

Fig. 7 The influence of Poisson’s ratio on the normalized
mode II stress intensity factor in a graded half-plane with a
surface crack; the case of plane strain, p „x …Ä0, q „x …Ät0 ,
m„x …Äm0 exp „gx…
586 Õ Vol. 69, SEPTEMBER 2002
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loading~t0 andt!. These are all intuitively expected results. Fro
Figs. 8–11 it may be seen that for the homogeneous half-p
~g50! the calculated crack opening displacements in all fo
cases are identical. This may easily be shown analytically by
ing Eqs. ~45! and ~46!. Figures 8–11 also show that the crac
opening displacement for the homogeneous medium is brack
by the results obtained forg,0 andg.0 and generally the crack
opening displacements for the fixed grip loading~e0 and g0!

Fig. 8 Normal crack opening displacement, v * „x …Äv „x ,¿0…
Àv „x ,À0…, p „x …Äs0 , q „x …Ä0, kÄ2, mÄm0 exp „gx…

Fig. 9 Tangential crack opening displacement, u * „x …Äu „x ,
¿0…Àu „x ,À0…, p „x …Ä0, q „x …Ät0 , kÄ2, mÄm0 exp „gx…

Fig. 10 Normal crack opening displacement for fixed grip
loading, v * „x …Äv „x ,¿0…Àv „x ,À0…, sÄ8m0e0 Õ„k¿1…, kÄ2,
mÄm0 exp „gx…
Transactions of the ASME
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20-
~Figs. 10 and 11! are closer to the homogeneous values than
crack opening displacements obtained from constant stresse~s0
andt0!.

Figure 12 describes a sample problem concerning a gra
half-plane with a surface crack loaded by a sliding rigid circu
stamp. It is assumed that along the contact areaa,y,b the con-
dition of Coulomb friction is valid withh as the coefficient of
friction. For the geometry and the direction of loading shown,
results are given in Figs. 13–15. Figures 13 and 14 show
modes I and II stress intensity factors, respectively. Figure
shows the normalized forceP for a given contact area ((b

Fig. 11 Tangential crack opening displacement for fixed grip
loading, u * „x …Äu „x ,¿0…Àu „x ,À0…, tÄ8m0g0 Õ„k¿1…, kÄ2,
m„x …Äm0 exp „gx…

Fig. 12 A graded half-plane with a surface crack loaded by a
sliding rigid circular stamp

Fig. 13 Mode I stress intensity factors for a graded half-plane
loaded by a sliding circular stamp as shown in Fig. 12,
„bÀa…ÕRÄ0.1, d ÕRÄ0.1, hÄ0.4, kÄ2, m„x …Äm0 exp „gx…
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2a)/R50.1) as a function of the stamp location. As expectedP
increases with increasing material stiffness~or g! and distancea.
However, for (a/R).2, P is very nearly constant. For details an
extensive results see@17#.

It should be observed that sincek2 can be positive or negative
there are no restrictions on the signs and relative magnitude
shear loadingst0 , . . . ,t4 . However,s0 , . . . ,s4 must be such
that the resultantk1 is positive. If k1 is negative the results ma
still be useful in superposition with additional external loads g
ing a sufficiently highk1 so that again finalk1 is positive. In the
absence of such tensile loads the mode I problem has to be re
sidered as a crack closure or crack/contact problem in which n
the crack tip the crack surfaces are partially closed and the con
region is determined by usingk1(c)50 as closure criterion,
wherec(0,c,d) is the end point of the contact region.

Thus, in the sliding contact problem considered in Fig. 12,
results given in Fig. 13 indicate that for small values of norm
ized material nonhomogeneity parametergR and stamp distance
a/R, k1 is negative and, as they stand, the results are not va
However, the results would be valid if the medium is subjected
for example, an additional in-plane tension.

Acknowledgment
This study was supported by AFOSR under the grant F496

98-1-0028.

Fig. 14 Mode II stress intensity factors for a graded half-plane
loaded by a sliding circular stamp as shown in Fig. 12,
„bÀa…ÕRÄ0.1, d ÕRÄ0.1, hÄ0.4, kÄ2, m„x …Äm0 exp „gx…

Fig. 15 Normalized force required for a given contact area
„bÀa…ÕRÄ0.1, d ÕRÄ0.1, hÄ0.4, kÄ2, m„x …Äm0 exp „gx…
SEPTEMBER 2002, Vol. 69 Õ 587
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Appendix A

Various Functions Used in the Solution of the Mixed-Mode
Crack Problem.

Rxx1~a,t !5
1

p

k21

k11

a2

l1l2~l1
21l2

2!
$gl2 cos~l2t !

1~gl122~l1
21l2

2!sin~l2t !!%, (A1)

Rxy1~a,t !52
2

p

1

k11

a

l1l2~l1
21l2

2!
$l2~l1

21l2
21g2/4!

3cos~l2t !2l1~l1
21l2

22g2/4!sin~l2t !%, (A2)

Rxx2~a,t !52
2

p

k21

k11

a3

l1l2~l1
21l2

2!
$l2 cos~l2t !

1l1 sin~l2t !%, (A3)

Rxy2~a,t !52
1

p

1

k11

a2

l1l2~l1
21l2

2!
$gl2 cos~l2t !

1~2~l1
21l2

2!1gl1!sin~l2t !%, (A4)

l15AR11R2

2
, (A5a)

l25AR12R2

2
, (A5b)

R15A~g2/41a2!21a2g2~32k!/~k11!, (A6)

R25g2/41a2. (A7)

Appendix B

Expressions for the kernelsk11„x,y,t… and k22„x,y,t….

k11~x,y,t !5k11
~ i !~x,y,t !1k11

~h!~x,y,t !, (B1)

k22~x,y,t !5k22
~ i !~x,y,t !1k22

~h!~x,y,t !, (B2)

k11
~ i !~x,y,t !5

k11

k21

exp~gx!

4p E
2`

`

K11
~ i !~v,y!exp~ iv~x2t !!dv,

(B3)

k11
~h!~x,y,t !5

k11

k21

exp~gx!

2 E
0

`

K11
~h!~a,t,x!cos~ay!da,

(B4)

k22
~ i !~x,y,t !5~k11!

exp~gx!

4p E
2`

`

K22
~ i !~v,y!exp~ iv~x2t !!dv,

(B5)

k22
~h!~x,y,t !5~k11!

exp~gx!

2 E
0

`

K22
~h!~a,t,x!cos~ay!da,

(B6)

where the integrands are given as

K11
~ i !~v,y!5(

j 53

4

~ iv~32k!1Ajnj~11k!!Pj~v!exp~njy!,

(B7)

K22
~ i !~v,y!5(

j 53

4

~nj1 ivAj !Zj~v!exp~njy!, (B8)
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K11
~h!~a,t,x!5(

j 53

4

~pj~3-k!1D ja~11k!!Bj* ~a,t !

3exp~pjx1~g/22l1!t !, (B9)

K22
~h!~a,t,x!5(

j 53

4

~a1H j pj !Gj* ~a,t !exp~pjx1~g/22l1!t !.

(B10)

The terms used in Eq.~50! are in the following form:

m11n~s!5E
21

1

~12r !21/2H11~s,r !Pn
~21/2,0!~r !dr, (B11)

m22n~s!5E
21

1

~12r !21/2H22~s,r !Pn
~21/2,0!~r !dr, (B12)

H11~s,r !5
d

2 H h11sS d

2
s1

d

2
,
d

2
r 1

d

2D1h11f S d

2
s1

d

2
,
d

2
r 1

d

2D J ,

(B13)

H22~s,r !5
d

2 H h22sS d

2
s1

d

2
,
d

2
r 1

d

2D1h22f S d

2
s1

d

2
,
d

2
r 1

d

2D J .

(B14)
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Vibration and Post-buckling of
In-Plane Loaded Rectangular
Plates Using a Multiterm
Galerkin’s Method
A procedure to calculate the natural frequencies of in-plane loaded, thin, slightly cur
simply supported rectangular plates is presented, with numerical results. This include
solutions to von Karman’s static equilibrium equation and the linear shell vibration eq
tion using Galerkin’s method. The compatibility equations are given in terms of Airy s
functions which satisfy the ‘‘shear free’’ and ‘‘constant normal displacement’’ in-pla
edge conditions. This procedure is an extension to the method presented by Hu
Leissa, the difference being the use of a multiterm Fourier series representation fo
initial imperfection, the static deflection and the vibratory modes.
@DOI: 10.1115/1.1489449#
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1 Introduction
In an interesting article on the vibration of geometrically im

perfect rectangular plates, Hui and Leissa@1# describe a single-
term Galerkin’s method to solve the nonlinear von Karma
equation for the static equilibrium state, and the linear shell vib
tion equation for the small amplitude vibratory motion, with th
corresponding compatibility conditions expressed in terms of A
stress functions, for simply supported plates subject to the foll
ing in-plane boundary conditions: all edges tangentially f
~shear free!, and constrained to move with constant displacem
in the in-plane direction normal to the edges. For these conditi
the Airy stress functions derived in@1# satisfy the compatibility
equation exactly, making this an ideal case for investigating
effect of geometric imperfections on the natural frequencies
in-plane stressed plates.

In @1#, the initial imperfections, the static displacements and
transverse vibration modes were assumed to be of the same
as one of the vibration modes of the corresponding flat plate.
purpose of this paper is to extend this approach to permit
inclusion of a series of several vibration modes for the static
dynamic out-of-plane displacements. This method was first u
by the author in a preliminary study to obtain the natural frequ
cies of slightly curved, unstressed plates, the results of which w
subsequently verified by Harrington@2# in his undergraduate re
search project.

2 Static Analysis
Consider the static equilibrium of a simply supported rectan

lar plate with a small initial imperfectionz0(x,y), thicknessh, and
edge dimensionsa and b under biaxial normal in-plane loading
of intensity Nx and Ny . Let the out-of-plane static displaceme
measured from the plane containing the plate edges bez(x,y),
and the static Airy stress function beF(x,y). The plate is made of
an isotropic material having a densityr, Poisson’s ration ~taken
as 0.3 in calculations!, and an elastic modulusE. For convenience,
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2001; final revision, January 29, 2002. Associate Editor: N. C. Perkins. Discussio
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the in-plane loading will be expressed nondimensionally in ter
of the nominal lowest buckling load of a uniaxially loaded simp
supported flat plate given byNxc5Dp2((1/a)21(1/b)2)2b2,
where D is the plate flexural rigidity given byD5Eh3/(12(1
2n2)). For simply supported plates, bothz0 and z may be ex-
pressed as Fourier sine series

z0~x,y!5(
i

(
j

Z0i , j sin~ ipx/a!sin~ j py/b! (1)

and

z~x,y!5(
i

(
j

Zi , j sin~ ipx/a!sin~ j py/b!. (2)

While any out-of-plane imperfection may be represented by
infinite series as in Eq.~1!, computations are only done for
truncated series, with the number of functions in thex and y
directions beingnx andny . The integersi and j would take odd
values for symmetrical cases and even values for antisymmet
cases.

The compatibility equation is

¹4F5Eh~~z,xy!
22~z0,xy!

22z,xxz,yy1z0,xxz0,yy!). (3)

The in-plane boundary conditions are

Fxy~0,y!5Fxy~a,y!50;Fyy~0,y!5Fyy~a,y!5Nx ;Fxy~x,0!

5Fxy~x,b!50;Fxx~x,0!5Fxx~x,b!5Ny . (4)

Substituting Eqs.~1! and~2! into Eq.~3! and carrying out some
algebraic, trigonometric and calculus operations leads to the
lowing expression forF which also satisfies Eq.~4!.

F5Nxy
2/21Nyx

2/21c0(
i

(
j

(
k

(
l

~T1i jkl 1T2i jkl 1T3i jkl

1T4i jkl !~Zi , jZk,l2Z0i , jZ0k,l !. (5)

Here

c05Eh/~4a2b2!;T1i jkl 5c1 cos~~ i 2k!px/a!cos~~ j 2 l !py/b!;

T2i jkl 5c2 cos~~ i 2k!px/a!cos~~ j 1 l !py/b!;

T3i jkl 5c3 cos~~ i 1k!px/a!cos~~ j 2 l !py/b!;

T1i jkl 5c4 cos~~ i 1k!px/a!cos~~ j 1 l !py/b!,

7,
n on
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c150 if i 5k and j 5 l otherwise

c15~ i jkl 2 i 2l 2!/~~ i 2k!2/r 1r ~ j 2 l !2!2;

c25~ i jkl 1 i 2l 2!/~~ i 2k!2/r 1r ~ j 1 l !2!2;

c35~ i jkl 1 i 2l 2!/~~ i 1k!2/r 1r ~ j 2 l !2!2;

c45~ i jkl 2 i 2l 2!/~~ i 1k!2/r 1r ~ j 1 l !2!2,

where the aspect ratior 5a/b.

The equilibrium equation for a rectangular plate is

D¹4~z2z0!5F ,yyz,xx1F ,xxz,yy22F ,xyz,xy . (6)

Using Galerkin’s method with a weighting function of the for
sin(ppx/a)sin(qpy/b) gives

Dp4~~p/a!21~q/b!2!2~Zp,q2Z0p,q!~ab/4!2E
x50

a E
y50

b

~F ,yyz,xx

1F ,xxz,yy22F ,xyz,xy!sin~ppx/a!sin~qpy/b!dxdy50. (7)

For each choice ofp and q, one nonlinear cubic equation i
obtained, giving a total ofnx3ny equations. These equations we
solved using a Newton-Raphson iterative scheme and the re
are discussed later.

3 Vibration Analysis
Let the dynamic out-of-plane displacement be

w~x,y,t !5W~x,y!sin~vt1f!

5(
m

(
n

Hm,n sin~mpx/a!sin~npyy/b!sin~vt1f!.

(8)

The dynamic compatibility equation for small amplitude vibr
tions is

¹4f 5Eh~2z,xyw,xy2z,yyw,xx2z,xxw,yy!. (9)

The in-plane boundary conditions are

f xy~0,y!5 f xy~a,y!5 f yy~0,y!5 f yy~a,y!5 f xy~x,0!5 f xy~x,b!

5 f xx~x,0!5 f xx~x,b!50. (10)

It can be shown that an Airy stress function that satisfies E
~9! and ~10! is

f 5~Eh/4!(
i

(
j

(
k

(
l

~S1mnkl1S2mnkl1S3mnkl1S4mnkl!

3~Zk,lHm,n!sin~vt1f! (11)

where
S1mnkl5c5 cos~~m2k!px/a!cos~~n2 l !py/b!;

S2mnkl5c6 cos~~m2k!px/a!cos~~n1 l !py/b!;

S3mnkl5c7 cos~~m1k!px/a!cos~~n2 l !py/b!;

S4mnkl5c8 cos~~m1k!px/a!cos~~n1 l !py/b!

in which

c550 if m5k and n5 l otherwise

c552~kn2ml!2/~~m2k!2/r 1r ~n2 l !2!2;

c65~kn1ml!2/~~m2k!2/r 1r ~n1 l !2!2;

c75~kn1ml!2/~~m1k!2/r 1r ~n2 l !2!2;

c852~kn2ml!2/~~m1k!2/r 1r ~n1 l !2!2.
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The equation of motion for small amplitude out-of-plane vibr
tions of a plate is

D¹4w2rhv2w2F ,yyw,xx2F ,xxw,yy12F ,xyw,xy

2 f ,yyz,xx1 f ,xxz,yy12 f ,xyz,xy50.

On application of Galerkin’s method, this yields

~Dp4~~p/a!21~q/b!2!22rhv2!Hp,q~ab/4!sin~vt1f!

2E
x50

a E
y50

b

~F ,yyw,xx1F ,xxw,yy22F ,xyw,xy1 f ,yyz,xx

1 f ,xxz,yy22 f ,xyz,xy!sin~ppx/a!sin~qpy/b!dxdy50.

(12)

Substituting Eqs.~5! and ~11!, and the values forZi , j obtained
from the static analysis into Eq.~12! and eliminating the common
factor sin(vt1f) results in an eigenvalue equation of the form

@K#$H%5v2@M #$H% (13)

where @K# and @M# are the stiffness and mass matrices, resp
tively.

The solution to the above equation gives the natural frequ
cies.

4 Results and Discussion
Numerical solutions to Eqs.~7! and ~13! were obtained for a

square plate subject to uniaxial in-plane loading, for various v
ues of load ratio (g5Nx /Nxc) and initial imperfection. The re-
sults presented here are for an initial imperfection in the form
the fundamental vibration mode of a plate given byz0(x,y)
5m0h sin(px/a)sin(py/b). The parameterm0 is a nondimensional
initial imperfection. For the single term analyses, the functi
sin(px/a)sin(py/b) was used for bothw and z. For the four term
analyses, the first two symmetrical sine functions were used
both x and y directions~i.e., sin(px/a), sin(px/a), sin(py/b) and
sin(3py/b)!. The nine term analyses included the terms sin(5px/a)
and sin(5py/b) also. The results are presented in terms of
following nondimensional parameters:

Fig. 1 Load-displacement relationship
Transactions of the ASME
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Fig. 2 Load-frequency relationship for the first four modes
i
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he
central displacement parameterm5z(0.5a,0.5b)/h and
natural frequency parameterln5vn /V1 where vn is the nth
natural frequency of the loaded, deformed plate andV1 is the
fundamental natural frequency of the unstressed flat plate g
by

V15p2~~1/a2!1~1/b2!!AD/~rh!.

Figure 1 shows the variation of the central displacement par
eter with load ratio, for initial imperfection values (m0) of zero
~initially flat plate!, 0.5, and 1.0. Figure 2 shows the variation
the natural frequency parameter with load. Some of the results
also given in numerical form in Table 1.
echanics
ven

m-

f
are

Computations were limited to the positive roots of the sta
displacement only. Vibration about the snap-through equilibri
configuration has not been considered here but these results
be generated using the computer program developed by the a
currently available at̂http://www.geocities.ilanko/vibration.htm&.

From Table 1 and Fig. 1 it can be seen that the discrepa
between the four-term and nine-term solution form is very small,
the worst being less than 1% forg54 andm050. However, the
discrepancy between the single-term and nine-term results is
ticeable, particularly forg.1, and reaches about 5.7% forg54
andm050.

From Fig. 2 it may be observed that for loadings below t
8.485
.279

8.680
.399
Table 1 Some numerical results

m0

Load
Ratio

m v1 /V1 v2 /V1 v3 /V1 v4 /V1

Single
Term

Four
Term

Nine
Term

Single
Term

Four
Term

Nine
Term

Four
Term

Nine
Term

Four
Term

Nine
Term

Four
Term

Nine
Term

0 1.0 0.000 0.000 0.000 0.000 0.000 0.000 4.000 4.000 4.899 4.899 8.485
4.0 2.965 2.802 2.804 2.449 2.388 2.377 3.958 3.941 6.552 6.544 8.289 8

1.0 1.0 1.662 1.643 1.643 1.577 1.547 1.547 4.708 4.707 5.521 5.520 8.685
4.0 3.269 3.115 3.117 2.757 2.676 2.661 4.344 4.331 6.844 6.834 8.405 8
SEPTEMBER 2002, Vol. 69 Õ 591
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lowest nominal buckling load, the difference between the sing
term results and the nine-term results for the fundamental
quency is not noticeable on the graph. This discrepancy beco
noticeable at higher loadings, and forg54 and m051.0 it is
about 3.6%. The effect of initial imperfection corresponding to
fundamental natural vibration mode of an unstressed flat plate
the higher natural frequencies is worth noting. For example,
g54, l2 changes from 3.941 for a flat plate to 4.331 form0
51.0, an increase of about 10%. This is comparable to the co
sponding change inl1 which is about 12% which shows that i
general a multiterm solution is desirable since any imperfectio
practice is unlikely to be of a pure vibration mode.

Conclusions
The natural frequencies of in-plane loaded simply suppor

rectangular plates with initial out-of-plane geometric imperfect
have been calculated using a multiterm Galerkin’s method
which the Airy stress functions that exactly satisfy the compati
ity equations for static and dynamic analyses were used. The
sults show that the discrepancy between the single-term re
presented by Hui and Leissa@1# and the multiterm results, for the
fundamental natural frequency of a square plate, is within ab
3.6% for uniaxial loadings of up to about four times the nomin
buckling load, for imperfections having the shape of the fun
592 Õ Vol. 69, SEPTEMBER 2002
le-
fre-
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rre-
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ults
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a-

mental natural mode of vibration of the flat plate with a cent
deflection equal to the plate thickness. The determination of
effect of imperfections of arbitrary shapes would require a mu
term approach, as do the calculation of higher natural frequen
except when the imperfection is of the same shape as the m
under consideration.
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The Isotropic Ellipsoidal Inclusion
With a Polynomial Distribution of
Eigenstrain
We consider the problem of determining the elastic field in an infinite elastic solid ind
by an ellipsoidal inclusion with a distribution of eigenstrains. The particular type
distribution considered in the article is characterized by a polynomial in the Cartes
coordinates of the points of the inclusion. Eshelby showed that in such a situatio
induced strain field within the inclusion is also characterized by a polynomial of the s
order. However, the explicit expression for this polynomial seems to have not yet
reported in the literature. The present study fills this gap.@DOI: 10.1115/1.1491270#
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1 Introduction
The problem of an ellipsoidal inclusion undergoing a stress-f

eigenstrain transformation~transformation strain! in the absence
of the surrounding matrix, is by now a classical problem in line
elasticity. The presence of the surrounding material induces a
tional ‘‘constrained’’ strains in the inclusion. Eshelby@1–3# first
considered this problem and showed that if the eigenstrai
given in the form of a polynomial of an arbitrary order in th
Cartesian coordinates of the points of the inclusion, then the
ditional ~induced! strain field in the inclusion is also characterize
by a polynomial of the same order. We shall refer to this resul
Eshelby’s polynomial conservation theorem. Since the publication
of Eshelby’s work, considerable extent of research had been d
over the past several decades on different aspects of this prob
Several authors, namely, Walpole@4#, Kinoshita and Mura@5–7#,
and Asaro and Barnett@8# proved that this theorem also holds fo
an anisotropic medium. Mura@9,10#, Nemat-Nasser and Hori@11#,
and Khachaturyan@12# have given exhaustive account of th
available results in this area. Furthermore, it is Mura who is
sponsible for giving currency to the terminology ‘‘eigenstrain
Much of the recent interest in this area is due to Markenscoff
her co-workers~@13—16#!, who were able to prove a conjectur
of Eshelby’s that ellipsoid is the only configuration having t
remarkable property that the stress field inside an inclusion
uniform eigenstrain is constant.

Returning to Eshelby’s polynomial conservation theorem, M
@9# has outlined a general method, based on multipole expans
of quantifying the additional strain field within the transforme
ellipsoid with a polynomial distribution of eigenstrain. Howeve
in practice, it is hardly possible to carry through his analysis
yond the first few terms. To the best of the writer’s knowledge,
explicit expression for the polynomial characterizing the str
field within the transformed ellipsoid has yet been reported in
literature. The purpose of the present article is to fill this g
Specifically, we deduce the explicit expression for this polynom
in terms of some integrals, which we call the potential integra
and are able to concatenate the results into an algorithmic f
usable for polynomials of arbitrary orders and especially su
for symbolic manipulation by computer. The method employed
deduce the results presented in the article is based on Ferre
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paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
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Dyson theorem~@17,18#! on the Newtonian potentials of hetero
geneous ellipsoids and some of its further developments
Rahman@19#.

Apart from the purely aesthetic appeal, the solution of the pr
lem has considerable practical significance. For example, altho
in many practical applications, the eigenstrains may not be exp
itly given in the form of a polynomial, but they can beuniformly
approximated in theboundeddomain of the ellipsoid by a poly-
nomial, as long as the function characterizing the eigenstrain
continuous. The basis for this statement has its roots in a theor
in the theory of functions, known as Bernstein’s theorem~@20#!.
To realize such an approximation practically, one can resor
some fairly well established algorithms, such as the least-squ
and Marquardt-Levenberg methods. Thus, the solution of
problem is capable of extending our ability to analyze proble
concerning ellipsoidal inclusions with nonuniform eigenstrain
Another area where the solution of the present problem migh
useful is related to dynamically transforming ellipsoidal incl
sions. It is well known that closed-form solutions of such pro
lems can be developed only for a handful of configurations, s
as, spherical~@21,22#! and cylindrical ~@23#!. It is probably not
possible to derive a closed-form solution for the problem o
dynamically transforming ellipsoid with three unequal axes. Ho
ever, for low frequency or short time ranges, the solution of
latter can be expanded as a formal power series in the wave n
ber or time, with the zeroth-order term being the correspond
elastostatic one. The problem is thus reducible to a potential
so that the results of solution of the elastostatic counterpart of
problem for a polynomial distribution of eigenstrain can be a
plied to deduce an approximate analytical solution. Furtherm
by retaining a sufficient number of terms in such an expansion
using various perturbation series improvement techniques, s
as, those based on exploiting the benefits of Domb-Sykes plo
discussed by Van Dyke in a lucid article~@24#!, it might be pos-
sible to improve the convergence of such a series solution of
problem up to a significant level to cover intermediate and e
high-frequency/time regimes.

We begin by introducing the notation that we shall make use
The symbolx is used in the article to mean the triplet of Cartesi
coordinates (x1 ,x2 ,x3) in the three-dimensional Euclidean spa
R3. Repeated indices are used to mean summation over 1,
unless stated otherwise. The symbol] i is used to mean the opera
tion of differentiation with respect toxi . The norm of the vectorx
is designated byuxu.
2 The Derivation

It can be shown~see, for instance,@9#! that the displacemen
field in an infinite elastic solid caused by an eigenstrain« i j* (x)
distributed within an inclusion occupying a domainVPR3 is
given by the expression
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ui~x!52CjkmnE
V

Gi j ,k~x2y!«mn* ~y!dy, (1)

whereGi j ,k5]kGi j , dy5dy1dy2dy3 , Cjkmn is the elasticity ten-
sor andGi j (x2y) is the elastostatic Green’s function, which co
responds to the displacement response of an infinite elastic
dium at the pointx, due to a point load applied at the pointy. The
eigenstrain-tensor«mn* (x) is symmetric. In what follows, it will be
assumed thatV is an ellipsoid with three unequal axesai( i
51,2,3)(a1.a2.a3), i.e.,

V5H xPR3U(
i 51

3

xi
2/ai

2<1J .

For a homogeneous isotropic material, we have

Cjkmn5ld jkdmn1md jmdkn1md jndkm ,

Gi j ~x2y!5
1

4pm

d i j

ux2yu
2

1

16pm~12n!
] i] j ux2yu, (2)

whered i j is Kronecker’s delta,l52nm/(122n),m are the Lame´
constants, andn the Poisson’s ratio of the material of the solid.

Putting ~2! into ~1!, we obtain

ui~x!5h1] iE
V

dy
«mm* ~y!

ux2yu
2h2] jE

V
dy

« i j* ~y!

ux2yu

1h3xk] i] jE
V

dy
« jk* ~y!

ux2yu
2h3] i] jE

V
dy

yk« jk* ~y!

ux2yu
, (3)

where

h15
122n

8p~12n!
, h25

324n

8p~12n!
, h35

1

8p~12n!
. (4)

In what follows, it is assumed that the eigenstrain« i j* (x) is
given in the following form:

« i j* ~x!5 (
p1q1r 50

N

« i jpqr* S 12(
n51

3
xn

2

an
2 D l 21S x1

a1
D pS x2

a2
D qS x3

a3
D r

,

~ l 51,2̄ !, (5)

where« i jpqr* are known dimensionless coefficients. Equation~5!
represents a polynomial inx of orderN12l 22. Additionally, for
l 52,3,4,̄ , this polynomial has the property that it vanishes
the bounding surface of the ellipsoid. It is worth mentioning
this context that the method employed~Ferrers-Dyson theorem! is
also capable of taking into consideration the special case w
l 50, in which case the eigenstrains are singular as the boun
surface of the ellipsoid is approached. It can be shown that
case leads to violation of compatibility of deformations and
such must be discarded.

Putting ~5! into ~3!, we obtain

ui~x!5h1] iGmm
N,l 2h2] jG i j

N,l1h3xk] i] jG jk
N,l2h3ak] i] j

(k)G̃ jk
N,l

(6)

where the following notation is introduced:

G i j
N,l5 (

p1q1r 50

N

« i jpqr* ( l )Vpqr
(a) ,

(k)G̃ i j
N,l5 (

p1q1r 50

N

« i jpqr* ( l )Vp1dk1 ,q1dk2 ,r 1dk3

(a)

5 (
p1q1r 50

N11

« i , j ,p2dk1 ,q2dk2 ,r 2dk3
* ( l )Vpqr

(a) (7)

and
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( l )Vpqr
(a) ~x!5E

V

dy

ux2yu S 12(
i 51

3
yi

2

ai
2 D l 21S y1

a1
D pS y2

a2
D qS y3

a3
D r

.

(8)

In the second equation in~7!, it should be assumed tha
« i , j ,21,k,l* 50, « i , j ,k,21,l* 50, « i , j ,k,l ,21* 50, for ;( i , j 51,2,3;k1 l
50¯N,k>0,l>0).

The reader would notice that Eq.~8! characterizes the Newton
ian potential of a distribution of mass whose mass density is c
acterized by the function

S 12(
i 51

3
xi

2

ai
2 D l 21S x1

a1
D pS x2

a2
D qS x3

a3
D r

, ~ l ,p,q,r 50,1,2̄ !.

(9)

This question was studied by Ferrers@17# and in complete gener
ality by Dyson@18#. In particular, the latter showed that the matt
distributed within an ellipsoid with three unequal semi-axesai( i
51,2,3) (a1.a2.a3) such that the mass density varies as

s~x!5s0S 12(
i 51

3
xi

2

ai
2 D h21

f S x1

a1
,
x2

a2
,
x3

a3
D ,

h.0, s0 is a constant, (10)

~f (x) is a sufficiently smooth function! produces outside the ellip
soid a harmonic potentialV(x):

V~x!5s0paE
a

`

dc
1

AD
(
m50

`
Mm1hcm

22mm! ~h!m11

3Dmf S a1x1

a1
21c

,
a2x2

a2
21c

,
a3x3

a3
21c D , (11)

where a5a1a2a3 , (h)m115h(h11)(h12) . . . (h1m)5G(h
1m11)/G(h) ~G(¯) is the gamma function! is the Pochham-
mer’s symbol, and

D5(
i 51

3
ai

21c

ai
2

]2

]xi
2 , M512(

i 51

3
xi

2

ai
21c

, D5)
i 51

3

~ai
21c!,

(12)

anda is the positive root of the equation1

12(
i 51

3
xi

2

ai
21a

50. (13)

The potential in the interior of the ellipsoid can be found
putting a50 in Eq. ~11!, which follows from Ivory’s theorem.
Equations~10! to ~13! are also valid forh50, provided it is
assumed that (21)!51.

It can be easily seen from Eq.~11! that when the mass densit
is given by~9! and xPV ~i.e., a50!, the infinite series in~11!
conveniently terminates as a result of successive differentia
and reduces to a polynomial inx of orderp1q1r 12l , implying
that within the ellipsoid,G i j

N,l , (k)G̃ i j
N,l reduce to polynomials inx

of ordersN12l andN12l 11, respectively. Thus, it can be see
from Eq. ~6! that the displacement field within the transforme
ellipsoid is characterized by a polynomial inx of order N12l
21, and hence the strain field by a polynomial inx of order N
12l 22. For the particular case wherel 51, this leads to the con-
clusion that if the eigenstrains within ellipsoid are characteriz
by a polynomial inx of ordersN, then the induced strain field
within the transformed ellipsoid is also characterized by a po
nomial in x of the same order. These were essentially the lines
arguments that led Eshelby to arrive at the polynomial conse
tion theorem.

1In fact, it can be shown~see, for instance,@25#! that for;xPR3\V, Eq. ~13! has
only one real positiveroot, the other two roots being complex conjugates.
Transactions of the ASME



Central to our derivation is the following result recently obtained by Rahman@19#:

( l )Vpqr
(a) ~x!5

pap!q! r ! ~ l 21!!

2p1q1r (
i 1 j 1k50

b

~21! i 1 j 1k
J i 1d(p)/2,j 1d(q)/2,k1d(r )/2x1

2i 1d(p)x2
2 j 1d(q)x3

2k1d(r )

~b2 i 2 j 2k!!

3 (
k850

[ p/2]

(
k950

[q/2]

(
k-50

[ r /2]

~21!k81k91k-
Jk81d(p)/2,k91d(q)/2,k-1d(r )/2a1

2k81d(p)a2
2k91d(q)a3

2k-1d(r )

~@p/2#2k8!! ~@q/2#2k9!! ~@r /2#2k-!!

3P i jkk8k9k-
pqr I i 1k81d(p), j 1k91d(q),k1k-1d(r )

(a) . (14)
t

s

be

cter-
by

s
of

it
where b5 l 1@p/2#1@q/2#1@r /2#(@p/2# is equal to the integer
part of p/2!, and

J i jk5
1

~2i !! ~2 j !! ~2k!!
,

P i jklmn5
~2i 12l !! ~2 j 12m!! ~2k12n!!

~ i 1 l !! ~ j 1m!! ~k1n!!
, (15)

P i jklmn
pqr [P i 1d~p!/2,j 1d~q!/2,k1d~r !/2,l 1d~p!/2,m1d~q!/2,n1d~r !/2,

and

I i jk
(a)5E

a

` dc

A~a1
21c!2i 11~a2

21c!2 j 11~a3
21c!2k11

, (16)

and d( i ) is an integer-valued function such thatd( i )50 if i is
zero or any even positive integer, andd( i )51 if i is any odd
positive integer. For points lying in the interior of the ellipsoid,a
should be set equal to zero.

In @20#, integrals~16! are defined as thepotential integrals of
the ellipsoid. Furthermore, they are defined as internal poten
integrals and external potential integrals of the ellipsoid, depe
ing on whetherxPV ~i.e., a50!, or xPR3\V ~i.e., aÞ0!. In the
sequel, the interior potential integralsI i jk

(0) will be denoted simply
by I i jk . In Section 3, recurrence relations are given by mean
Journal of Applied Mechanics
ial
nd-

of

which closed-form expressions for the potential integrals can
deduced for alli , j ,k50,1,2,̄ , in terms of elliptic integrals of
the first and second kinds.

An interesting feature of Eq.~14! is that each single term
x1

px2
qx3

r yields a polynomial inx of order p1q1r 12l . Further-
more, each individual power ofx1 ,x2 ,x3 in all the terms in the
resulting polynomial is odd or even, depending on whetherp,q,r
are odd or even, respectively. For instance, the density chara
ized by the functionx1

9x2
10x3

7 generates a potential characterized
a polynomial inx of order 28 in which the powers ofx1 andx3 are
only odd numbers, while that ofx2 is either zero or even number
only. Specifically, the resulting polynomial would contain terms
the formx1

2t111x2
2t2x3

2t311, wheret11t21t350,1,2,̄ ,13.
Following the above arguments, Rahman@19# showed that for

xPV, equations in~7! can be reduced to the following explic
polynomial forms:

G i j
N,l5 (

p1q1r 50

N12l

Fpqr
i j ,l x1

px2
qx3

r ,

(k)G̃ i j
N,l5 (

p1q1r 50

N12l 11

(k)F̃pqr
i j ,l x1

px2
qx3

r , (17)

where
Fpqr
i j ,l 5

pa~ l 21!! ~21!b0

2d(p)1d(q)1d(r )p!q! r ! (
t11t21t35t

g
@2t11d~p!#! @2t21d~q!#! @2t31d~r !#!

4t11t21t3~ t11t21t31 l 2b0!!
3« i , j ,d~p!12t1 ,d~q!12t2 ,d~r !12t3

*

3 (
k850

t1

(
k950

t2

(
k-50

t3

~21!k81k91k-
@p12k81d~p!#! @q12k91d~q!#!

~ t12k8!! ~ t22k9!! ~ t32k-!!

3
@r 12k-1d~r !#!

@2k81d~p!#! @2k91d~q!#! @2k-1d~r !#! @@p/2#1k81d~p!#! @@q/2#1k91d~q!#! @@r /2#1k-1d~r !#!

3a1
2k81d(p)a2

2k91d(q)a3
2k-1d(r )I (p1d(p))/21k8,(q1d(q))/21k9,(r 1d(r ))/21k-

(0) . (18)
In Eq. ~18!, the following notation is introduced:

t5H b02 l ,¯b0 ,¯ ,g; if b0> l

0,1,̄ ,g; if b0< l J , b05Fp

2G1Fq

2G1F r

2G ,
g5FN

2 G2epqr
N ,

epqr
N 5

d~p1q1r 1N!1d~p!1d~q!1d~r !2d~N!

2
5d~p!

1d~q!1d~r !2d~p!d~q!2d~q!d~r !2d~r !d~p!

2d~N!d~p!2d~N!d~q!2d~N!d~r !12d~p!d~q!d~N!

12d~q!d~r !d~N!12d~r !d~p!d~N! (19)
Expression for(k)F̃pqr
i j ,l can be easily deduced fromFpqr

i j ,l by the
following substitutions:

g→g̃5FN11

2 G2epqr
N11 ,

« i , j ,2t11d~p!,2t21d~q!,2t31d~r !
*

→« i , j ,2t11d(p)2dk1 ,2t21d(q)2dk2,2t31d(r )2dk3
* .

Putting ~17! into ~6!, we obtain

ui~x!5 (
p1q1r 50

N12l 21

Lpqr
i ,l x1

px2
qx3

r 1xk (
p1q1r 50

N12l 22

Spqr
ik,l x1

px2
qx3

r ,

(20)
SEPTEMBER 2002, Vol. 69 Õ 595



s-

al

eld
the
is is

field
tion
s
r

where

Lpqr
i ,l 5h1@~p11!Fp11,q,r

mm,l d i11~q11!Fp,q11,r
mm,l d i21~r 11!

3Fp,q,r 11
mm,l d i3#2h2@~p11!Fp11,q,r

i1,l 1~q11!Fp,q11,r
i2,l 1~r

11!Fp,q,r 11
i3,l #2h3ak@~p12!(k)F̃p12,q,r

1k,l

1~q11!(k)F̃p11,q11,r
2k,l 1~r 11!(k)F̃p11,q,r 11

3k,l #~p11!d i1

2h3ak@~p11!(k)F̃p11,q11,r
1k,l 1~q12!(k)F̃p,q12,r

2k,l

1~r 11!(k)F̃p,q11,r 11
3k,l #~q11!d i2

2h3ak@~p11!(k)F̃p11,q,r 11
1k,l 1~q11!(k)F̃p,q11,r 11

2k,l

1~r 12!(k)F̃p,q,r 12
3k,l #~r 11!d i3 , (21)

Spqr
ik,l 5h3@~p12!Fp12,q,r

k1,l 1~q11!Fp11,q11,r
k2,l

1~r 11!Fp11,q,r 11
k3,l #~p11!d i11h3@~p11!Fp11,q11,r

k1,l

1~q12!Fp,q12,r
k2,l 1~r 11!Fp,q11,r 11

k3,l #~q11!d i2

1h3@~p11!Fp11,q,r 11
k1,l 1~q11!Fp,q11,r 11

k2,l

1~r 12!Fp,q,r 12
k3,l #~r 11!d i3 .

Hence the strain field within the transformed ellipsoid is given

2« i j 5 (
p1q1r 50

N12l 22

@~Lp11,q,r
i ,l d j 11Lp11,q,r

j ,l d i1!~p11!1~Lp,q11,r
i ,l d j 2

1Lp,q11,r
j ,l d i2!~q11!1~Lp,q,r 11

i ,l d j 31Lp,q,r 11
j ,l d i3!~r 11!

1Spqr
i j ,l 1Spqr

j i ,l #x1
px2

qx3
r 1xk (

p1q1r 50

N12l 23

@~Sp11,q,r
ik,l d j 1
e

y
n
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1Sp11,q,r
jk,l d i1!~p11!1~Sp,q11,r

ik,l d j 21Sp,q11,r
jk,l d i2!~q11!

1~Sp,q,r 11
ik,l d j 11Sp,q,r 11

jk,l d i1!~r 11!#x1
px2

qx3
r . (22)

In using Eq.~22!, special attention should be paid to two po
sible circumstances. Specifically, if, in Eq.~18!, it happens that
g,0 or g,t, the correspondingFpqr

i j ,l s should be assumed equ
to zero.

So far we have been concerned with the induced strain fi
within the transformed ellipsoid. It is also easy to calculate
strain field outside the ellipsoid using the present approach. Th
based on the observation@19# that Eqs.~17! and~18! also valid for
xPR3\V, provided the internal potential integrals

I (p1d(p))/21k8,(q1d(q))/21k9,(r 1d(r ))/21k- ,

are replaced by the corresponding external ones, i.e.,

I (p1d(p))/21k8,(q1d(q))/21k9,(r 1d(r ))/21k-
(a) .

Putting then Eqs.~17! and~18! with these changes into~6!, it is
easy to calculate the displacement field and hence the strain
outside the ellipsoid. Care now should be taken of the situa
that unlike the case wherexPV, the external potential integral
are dependent onx througha. Therefore, in applying the operato
] i , the following relation should be taken into view
] i~x1
px2

qx3
r I (p1d(p))/21k8,(q1d(q))/21k9,(r 1d(r ))/21k-

(a)
!

5~px1
p21x2

qx3
r d ip1qx1

px2
q21x3

r d iq1rx1
px2

qx3
r 21d ir !I (p1d(p))/21k8,(q1d(q))/21k9,(r 1d(r ))/21k-

(a)

2
x1

px2
qx3

r

A~a1
21a!p1d(p)12k811~a2

21a!q1d(q)12k911~a3
2
1a!r 1d(r )12k-11

] ia.
rain

The resulting expressions for the displacement and strain fi
outside the ellipsoid are therefore extremely involved. A full de
vation is left to the interested reader as an exercise.

We close this section by considering the problem of a spher
inclusion with radiusR0 . Solution of this problem can be easil
deduced from the solution of the ellipsoidal inclusion by letti
lds
ri-

ical

g

ai→R0 in the relevant equations. The potential integrals~16! can
be easily evaluated in closed form. Thus, for this case, the st
field within the transformed sphere is still given by Eqs.~21! and
~22! with Fpqr

i j ,l given by
Fpqr
i j ,l 5

pR0
2~ l 21!! ~21!b0

2d(p)1d(q)1d(r )p!q! r ! (
t11t21t35t

g
@2t11d~p!#! @2t21d~q!#! @2t31d~r !#!

4t11t21t3~ t11t21t31 l 2b0!!
« i , j ,d~p!12t1 ,d~q!12t2 ,d~r !12t3

*

3 (
k850

t1

(
k950

t2

(
k-50

t3

~21!k81k91k-
@p12k81d~p!#! @q12k91d~q!#!

~ t12k8!! ~ t22k9!! ~ t32k-!!

3
@r 12k-1d~r !#!

@2k81d~p!#! @2k91d~q!#! @2k-1d~r !#! @@p/2#1k81d~p!#! @@q/2#1k91d~q!#! @@r /2#1k-1d~r !#!

3
1

R0
p1q1r~p1q1r 1d~p!1d~q!1d~r !12k812k912k-!

.
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3 Examples

3.1 Constant Eigenstrain. As the simplest application o
the results obtained in this section, let us consider the cas
constant eigenstrain, i.e.,N50, l 51. This case was studied b
Eshelby@2#. Solution for this case can be obtained from our s
lution by putting

l 51, « i jpqr* 50 ~ i , j 51,2,3 and p1q1r>1!, (23)

into the relevant equations.
Thus, using Eq.~22!, we obtain

2« i j 5L100
i ,1 d j 11L100

j ,1 d i11L010
i ,1 d j 21L010

j ,1 d i21L001
i ,1 d j 31L001

j ,1 d i3

1S000
i j ,11S000

j i ,1 . (24)

Writing Eq. ~24! explicitly, we obtain

«115L100
1,11S000

11,1, «225L010
2,11S000

22,1, «335L001
3,11S000

33,1,

«125«215
1

2
~L100

2,11L010
1,11S000

12,11S000
21,1!,

(25)

«135«315
1

2
~L100

3,11L001
1,11S000

13,11S000
31,1!,

«235«325
1

2
~L010

3,11L001
2,11S000

23,11S000
32,1!,

where the relevantL’s and S’s, calculated as per Eqs.~21! and
~18!, are given by

~2pa!21L100
1,152h1«mm000* I 1001h2«11000* I 100

1h3~3a1
2«11000* I 2001a2

2«22000* I 1101a3
2«33000* I 101!,

~2pa!21S000
11,152h3«11000* I 100,

~2pa!21L010
2,152h1«mm000* I 0101h2«22000* I 010

1h3~a1
2«11000* I 11013a2

2«22000* I 0201a3
2«33000* I 011!,

~2pa!21S000
22,152h3«22000* I 010,

~2pa!21L001
3,152h1«mm000* I 0011h2«33000* I 001

1h3~a1
2«11000* I 1011a2

2«22000* I 01113a3
2«33000* I 002!,

~2pa!21S000
33,152h3«33000* I 001, (26)

~2pa!21L100
2,15h2«12000* I 1001h3«12000* ~a1

21a2
2!I 110,

~2pa!21L010
1,15h2«12000* I 0101h3«12000* ~a1

21a2
2!I 110,

~2pa!21S000
12,152h3«12000* I 100,

~2pa!21S000
21,152h3«12000* I 010,

~2pa!21L100
3,15h2«13000* I 1001h3«13000* ~a1

21a3
2!I 101,

~2pa!21L001
1,15h2«13000* I 0011h3«13000* ~a1

21a3
2!I 101,

~2pa!21S000
13,152h3«13000* I 100,

~2pa!21S000
31,152h3«13000* I 001,

~2pa!21L010
3,15h2«23000* I 0101h3«23000* ~a2

21a3
2!I 011,

~2pa!21L001
2,15h2«23000* I 0011h3«23000* ~a2

21a3
2!I 011,

~2pa!21S000
23,152h3«23000* I 010,

~2pa!21S000
32,152h3«23000* I 001.

Alternatively, Eqs.~25! and~26! can be cast into Eshelby’s form

« i j 5Si jkl «kl000* , (27)
Journal of Applied Mechanics
of

o-

:

where

S11115
~122n!a

4~12n!
I 1001

3aa1
2

4~12n!
I 200,

S11125S11215S11135S113150,

S11225
2~122n!a

4~12n!
I 1001

aa2
2

4~12n!
I 110,

S11335
2~122n!a

4~12n!
I 1001

aa3
2

4~12n!
I 101,

S12125S12215
~122n!a

8~12n!
~ I 1001I 010!1

~a1
21a2

2!a

8~12n!
I 110,

S12115S12135S12225S12235S12315S12325S123350,

S13135S13315
~122n!a

8~12n!
~ I 1001I 001!1

~a1
21a3

2!a

8~12n!
I 101,

S13115S13125S13225S13235S13315S13325S133350,

S23235S23325
~122n!a

8~12n!
~ I 0101I 001!1

~a2
21a3

2!a

8~12n!
I 011,

S23115S23125S23135S23215S23225S23315S233350,

S22115
2~122n!a

4~12n!
I 0101

aa1
2

4~12n!
I 110,

S22225
~122n!a

4~12n!
I 0101

aa2
2

4~12n!
I 020,

(28)

S22335
2~122n!a

4~12n!
I 0101

aa3
2

4~12n!
I 110,

S22125S22215S22135S22315S22235S223250,

S33115
2~122n!a

4~12n!
I 0011

aa1
2

4~12n!
I 011,

S33225
2~122n!a

4~12n!
I 0011

aa2
2

4~12n!
I 011,

S33335
~122n!a

4~12n!
I 0011

aa3
2

4~12n!
I 011,

S33125S33215S33135S33315S33235S333250.

The elements ofSi jkl constitute a fourth-order tensor called th
Eshelby tensor. All other components of this tensor not liste
above may be found by using the obvious relationsSi jkl 5Sjikl ,
Si jkl 5Si jlk . Equations~28! coincide precisely with Eshelby’s so
lution ~@1–3,9#!, and this renders credence to the correctness
our analysis.

3.2 Linear Eigenstrain. As the next example, let us con
sider the case of linear eigenstrain. Specifically, let us assume
« i jpqr* 50 (i , j 51,2,3), wherep1q1r>2. Furthermore, without
loss in generality, we may assume that« i jpqr* 50 (i , j 51,2,3) for
p1q1r 50, because this case corresponds to constant ei
strain, which we have already treated.

Writing in explicit form, the induced strain field for this cas
can be written as

« i j 5c0
i j 1c1

i j x11c2
i j x21c3

i j x3 , ~ i , j 51,2,3!. (29)

Here the coefficientsc0
i j are given by« i j in equations in~25! with

the only difference that now in evaluating the relevantL’s and
S’s, N should be put equal to 1. It turns out thatc0

i j 50. At the end
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of this section we will elaborate whyc0
i j 50 for this case. The

other coefficients, namelyc1
i j ,c2

i j ,c3
i j , are given by

c1
1152~L200

1,11S100
11,1!, c2

115L110
1,11S010

11,11S100
12,1,

c3
115L101

1,11S001
11,11S100

13,1, c1
225L110

2,11S100
22,11S010

21,1,

c2
2252~L020

2,11S010
22,1!, c3

225L011
2,11S001

22,11S010
23,1,

c1
335L101

3,11S100
33,1, c2

335L011
3,11S010

33,11S001
32,1,

c3
3352~L002

3,11S001
33,1!,

c1
125

1

2
~2L200

2,11L110
1,11S100

12,112S100
21,11S010

11,1!,

c2
125

1

2
~L100

2,112L020
1,112S010

12,11S010
21,11S100

22,1!,

c3
125

1

2
~L101

2,11L011
1,11S001

12,11S001
21,11S100

23,11S010
13 !, (30)

c1
135

1

2
~2L200

3,11L101
1,11S100

13,112S100
31,11S001

11,1!,

c2
135

1

2
~L100

3,11L011
1,11S010

13,11S010
32,11S100

32,11S001
12,1!,

c3
135

1

2
~L101

3,112L002
1,112S001

13,11S001
31,11S100

33,1!,

c1
235

1

2
~L110

3,11L101
2,11S100

23,11S100
32,11S010

31,11S001
21,1!,

c2
235

1

2
~2L020

3,11L011
2,11S010

23,112S010
32,11S001

22,1!,

c3
235

1

2
~L011

3,112L002
2,112S001

23,11S001
32,11S010

33,1!.

The relevantL’s and S’s entering into Eqs.~30!, calculated
using ~21! and ~18!, are given by

~pa!21L200
1,1523h1a1«mm100* I 2001h2~3a1«11100* I 200

1a2«12010* I 1101a3«13001* I 101!

23h3@~a1«11100* 1a2«12010* 1a3«13001* !I 200

2~5a1
3«11100* I 3001a2

3«12010* I 2101a3
3«13001* I 201!#

13h3a1a2~a1«12010* 1a2«22100* !I 210

13h3a1a3~a1«13001* 1a3«33100* !I 201,

~2pa!21S100
11,152h3~3a1«11100* I 2001a2«12010* I 1101a3«13001* I 101!,

~2pa!21L110
1,152a2h1«mm010* I 1101h2~a1«12100* 1a2«11010* !I 110

13a1a2h3~a1«11010* 1a2«12100* !I 210

2h3@a1«21100* ~ I 11023a1
2I 210!1a2«22010*

3~ I 11023a2
2I 120!1a3«23001* ~ I 1102a3

2I 110!#

1h3a2a3~a2«23001* 1a3«33010* !I 110,

~2pa!21S010
11,152h3~a1«12100* 1a2«11010* !I 110,

~pa!21S100
12,152h3~3a1«12100* I 2001a2«22010* I 1101a3«23001* I 101!,
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~2pa!21L101
1,152h1a3«mm001* I 1011h2~a1«13100* 1a3«11001* !I 101

13h3a1a3~a1«11001* 1a3«13100* !I 201

2h3@a1«13100* ~ I 10123a1
2I 201!1a2«32010*

3~ I 1012a2
2I 111!1a3«33001* ~ I 10123a3

2I 102!#

1h3a2a3~a2«22001* 1a3«23010* !I 111,

~2pa!21S001
11,152h3~a1«23100* 1a3«11001* !I 101,

~2pa!21S100
13,152h3~3a1«13100* I 2001a2«23010* I 1101a3«33001* I 101!,

~2pa!21L110
2,152a1h1«mm100* I 1101h2~a1«22100* 1a2«12010* !I 110

13a1a2h3~a1«12010* 1a2«22100* !I 120

2h3@a1«11100* ~ I 1102a1
2I 210!

1a2«12010* ~ I 11023a2
2I 120!1a3«13001* ~ I 110

23a3
2I 111!#1a1a3h3~a1«12001* 1a3«23100* !I 110,

~2pa!21S100
22,152h3~a1«22100* 1a2«12010* !I 110,

~2pa!21S010
21,152h3~a1«11100* I 11013a2«22010* I 0201a3«23001* I 011!,

~pa!21L020
2,1523h1a2«mm100* I 0201h2~a1«12100* I 110

13a2«22100* I 0201a3«23001* I 011!13h3a1a2~a1«11010*

1a2«12100* !I 12023h3@a1«12100* ~ I 0202a1
2I 120!

1a2«22010* ~ I 02025a2
2I 030!1a3«23001* ~ I 020

23a3
2I 021!#13h3a2a3~a2«23001* 1a3«330010* !I 021,

~2pa!21S010
21,152h3~a1«12100* I 11013a2«22010* I 0201a3«23001* I 011!,

~2pa!21L011
2,152h1a3«mm001* I 0111h2~a2«23010* 1a3«22001* !I 011

1h3a1a3~a1«11001* 1a2«13100* !I 111

13h3a2a3~a2«22001* 1a3«23010* !I 021

2h3@a1«13100* ~ I 0112a1
2I 111!1a2«23010* ~ I 011

23a2
2I 021!1a3«33001* ~ I 01123a3

2I 012!#

~2pa!21S001
22,152h3~a2«23010* 1a3«22001* !I 011,

~2pa!21S010
23,152h3~a1«13100* I 11013a2«23010* I 0201a3«33001* I 011!,

~2pa!21L101
3,152h1a3«mm100* I 1011h2~a1«33100* 1a3«13001* !I 101

13h3a1a3~a1«13001* 1a3«33100* !I 102

2h3@a1«11100* ~ I 10123a1
2I 201!1a2«12010* ~ I 101

2a2
2I 111!1a3«13001* ~ I 10123a3

2I 102!#

~2pa!21S100
33,152h3~a1«23100* 1a3«13001* !I 101,

~2pa!21L011
3,152a2h1«mm010* I 0111h2~a2«33010* 1a3«23001* !I 011

1h3a1a2~a1«11010* 1a2«12100* !I 111

1h3a2a3~a2«23001* 1a3«33010* !I 012

2h3@a1«12100* ~ I 0112a1
2I 111!

1a2«22010* ~ I 01123a2
2I 021!

1a3«23001* ~ I 01123a3
2I 012!#

13h3~a2«23001* 1a3«33010* !I 012, (31)

~2pa!21S010
33,152h3~a2«33010* 1a3«23001* !I 011,
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~2pa!21S001
32,152h3~a1«12100* I 1011a2«22010* I 01113a3«23001* I 002!,

~pa!21L002
3,1523h1a3«mm001* I 0021h2~a1«13100* I 1011a2«23010* I 011

13a3«33001* I 002!23h3@a1«13100* ~ I 0022a1
2I 102!

1a2«23010* ~ I 0022a2
2I 012!1a3«33001* ~ I 00225a3

2I 003!#

13h3a1a3~a1«11001* 1a3«13100* !I 102

13h3a2a3~a2«22001* 1a3«23010* !I 012,

~2pa!21S001
33,152h3~a1«13100* I 1011a2«23010* I 0111a3«33001* I 002!,

~pa!21L200
2,152h1a2«mm010* I 1101h2~3a1«12100* I 2001a2«22010* I 110

1a3«23001* I 101!13h3a1a2~a1«11010* 1a2«12100* !I 210

1h3a2a3~a2«23001* 1a3«33010* !I 111

2h3@a1«12100* ~ I 11023a1
2I 210!1a2«22010*

3~ I 11023a2
2I 120!1a3«23001* ~ I 1102a3

2I 111!#

~2pa!21L110
1,152h1a2«mm010* I 1101h2~a1«12100* 1a2«11010* !I 110

13h3a1a2~a1«11010* 1a2«12100* !I 210

2h3@a1«12100* ~ I 11023a1
2I 210!1a2«22010* ~ I 110

23a2
2I 120!1a3«23001* ~ I 1102a3

2I 111!#

2h3@a1«13100* ~ I 10123a1
2I 201!1a2«23010* ~ I 101

2a2
2I 111!1a3«33001* ~ I 1012a3

2I 102!#

~2pa!21S100
12,152h3~3a1«12100* I 2001a2«22010* I 1101a3«23001* I 101!,

~2pa!21S100
21,15~2pa!21S010

11,152h3~a1«12100* 1a2«11010* !I 110,

~2pa!21L110
2,152h1a1«mm100* I 1101h2~a1«22100* 1a2«12010* !I 110

13h3a1a2~a1«12010* 1a2«22100* !I 120

1h3a1a3~a1«13001* 1a3«33100* !I 111

2h3@a1«11100* ~ I 11023a1
2I 210!1a2«12010*

3~ I 11023a2
2I 120!1a3«13001* ~ I 1102a3

2I 111!#

~pa!21L020
1,1523h1a2«mm010* I 0201h2~a1«11100* I 110

13a2«12010* I 0201a3«13001* I 011!13h3a1a2~a1«12010*

1a2«22100* !I 1201h3a1a3~a1«13001* 1a3«33100* !I 111

2h3@a1«11100* ~ I 11023a1
2I 210!1a2«12010*

3~ I 11023a2
2I 120!1a3«13001* ~ I 1102a3

2I 111!#

~2pa!21S010
12,152h3~a1«22100* 1a2«12010* !I 110,

~2pa!21S010
21,152h3~a1«11100* I 11013a2«12010* I 0201a3«13001* I 011!,

~2pa!21S010
22,152h3~a1«12100* I 11013a2«22010* I 0201a3«23001* I 011!,

~2pa!21L101
2,15h2~a1«23100* 1a3«12001* !I 1011h3a2a3~a2«12001*

1a3«13010* !I 1111h3a1a3~a1«12001* 1a3«23100* !I 111

1h3a1a2~a1«13010* 1a2«23100* !I 111,

~2pa!21L011
1,15h2~a2«13010* 1a3«12001* !I 0111h3a2a3~a2«12001*

1a3«13010* !I 1111h3a1a3~a1«12001* 1a3«23100* !I 111

1h3a1a2~a1«13010* 1a2«23100* !I 111,

~2pa!21S001
12,152h3~a1«23100* 1a3«12001* !I 101,
Journal of Applied Mechanics
~2pa!21S001
21,152h3~a2«13010* 1a3«12001* !I 101,

~2pa!21S100
23,152h3~a1«33100* 1a3«13001* !I 101,

~2pa!21S010
13,152h3~a1«23100* 1a2«13010* !I 110,

~pa!21L200
3,152h1a3«mm001* I 1011h2~3a1«13100* I 2001a2«23010* I 110

1a3«33001* I 101!13h3a1a3~a1«11001* 1a3«13100* !I 201

1h3a2a3~a2«22001* 1a3«23010* !I 111

2h3@a1«13100* ~ I 10123a1
2I 201!1a2«23010*

3~ I 1012a2
2I 111!1a3«33001* ~ I 10123a3

2I 102!#

~2pa!21S100
31,152h3~a1«13100* 1a3«11001* !I 101,

~2pa!21L110
3,15h2~a1«23100* 1a2«13010* !I 1101h3a2a3~a2«12001*

1a3«13010* !I 1111h3a1a3~a1«12001* 1a3«23100* !I 111

1h3a1a2~a1«13010* 1a2«23100* !I 111,

~2pa!21S010
32,152h3~a2«23010* 1a3«22001* !I 011,

~2pa!21S100
32,152h3~a1«23100* 1a3«12001* !I 101,

~pa!21L002
1,152h1a1«mm100* I 1011h2~a1«11100* I 1011a2«12010* I 011

13a3«13001* I 002!13h3a1a3~a1«13001*

1a3«33100* !I 1021h3a1a2~a1«12010* 1a2«22100* !I 111

2h3@a1«11100* ~ I 10123a1
2I 201!1a2«12010* ~ I 101

2a2
2I 111!1a3«13001* ~ I 10123a3

2I 102!#

~2pa!21S001
13,152h3~a1«33100* 1a3«13001* !I 101,

~2pa!21S001
31,152h3~a1«11100* I 1011a2«12010* I 01113a3«13001* I 002!,

~2pa!21 S010
31,152h3~a2«13010* 1a3«12001* !I 011,

~pa!21L020
3,152h1a3«mm001* I 0111h2~a1«13100* I 11013a2«23010* I 020

1a3«33001* I 011!1h3a1a3~a1«11001* 1a3«13100* !I 111

13h3a2a3~a2«22001* 1a3«23010* !I 021

2h3@a1«13100* ~ I 0112a1
2I 111!1a2«23010*

3~ I 01123a2
2I 021!1a3«33001* ~ I 01123a3

2I 012!#

~pa!21L002
2,152h1a2«mm010* I 0111h2~a1«12100* I 1011a2«22010* I 011

13a3«23001* I 002!13h3a2a3~a2«23001*

1a3«33010* !I 0121h3a1a2~a1«11010* 1a2«12100* !I 111

2h3@a1«12100* ~ I 0112a1
2I 111!1a2«22010*

3~ I 01123a2
2I 021!1a3«23001* ~ I 01123a3

2I 012!#

~2pa!21S001
23,152h3~a2«33010* 1a3«23001* !I 011.

Closed-form expressions for all the potential integrals enter
in Eq. ~31! are given in the next section~see Eqs.~35!, ~36!, and
~37!!. Equations~31! can also be cast in Eshelby’s format. Calc
lations for eigenstrains characterized by higher order polynom
can be carried out in a similar fashion, although they are best d
using different symbolic-numeric processors, such as, Mat
Maple, and Mathematica. We close this section with two imp
tant observations. First, in the general case where the eigenst
are given by quadratic or higher-order polynomials, it is not p
sible to represent the induced strain field in Eshelby’s form. T
can be easily illustrated by considering the case where the ei
strains are given by a single term of the form
SEPTEMBER 2002, Vol. 69 Õ 599
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« i jpqr* ~x1 /a1!p~x2 /a2!q~x3 /a3!r~p1q1r>2!

~no summation onp,q,r implied!.

The availability of the Eshelby tensor for this case would imp
that the induced strain field is representable in the form

« i j 5Si jkl «kl*

5Si jkl «klpqr* S x1

a1
D pS x2

a2
D qS x3

a3
D r

~no summation onp,q,r implied!.

However, as can be seen from Eq.~14!, in this case the induced
strain field isnot characterized by just a single term of the for
(x1 /a1)p(x2 /a2)q(x3 /a3) r , rather by anentire polynomial of or-
derp1q1r 12l . Thus this observation leads us to the conclus
that in the general case of arbitrary order polynomials where
eigenstrains are neither constant nor linear, it is not possibl
deduce an explicit expression for the Eshelby tensor.

The second observation is related to an interesting propert
the polynomial characterizing the induced strain field within t
ellipsoid. In order to lead the reader to this property, once again
us assume that the eigenstrains are given by a single term o
form « i jstu* (x1 /a1)s(x2 /a2) t(x3 /a3)u(s1t1u>0) ~no sum on
s,t,u!. Calculating the displacement gradient, we have

]nui~x!5h1] i]nGmm
N,l 2h2] i] jG jn

N,l1h3] i] jG j r
N,l1h3xk] i] j]nG jk

N,l

2h3] i] j]n
(k)G̃ jk

N,l . (32)

For this case, from Eqs.~7!, we have

G i j
N,l5« i jstu* ( l )Vstu

(0) , (k)G̃ i j
N,l

5« i , j ,s2dk1 ,t2dk2 ,u2dk3
* ( l )Vstu

(0) ~no sum ons,t,u!.

Now, it can be easily seen from the Eqs.~32! and~14! that the
polynomial characterizing the induced strain field in the ellips
~which is given by a polynomial of orderN12l 22! has the prop-
erty that the sum of powers ofx1 ,x2 ,x3 in each individual term,
x1

px2
qx3

r , in that polynomial~see Eq.~22!!, i.e., p1q1r , must be
even or odd, depending on whethers1t1u is even or odd, re-
spectively. Thus, in the linear eigenstrain case, the resulting p
nomial will not have the zeroth-order term. This is why it turn
out that in Eq.~29!, c0

i j 50. Further, if we consider the case o
quadratic eigenstrains, i.e.,« i j* 5« i jstu* (x1 /a1)s(x2 /a2) t(x3 /a3)u

(s1t1u52), it will turn out that the resulting polynomial will
not have the first-order terms. Similarly, for the case of cu
eigenstrains, the resulting polynomial will not have the zero
order and quadratic terms.

4 Recurrence Relations for the Potential Integrals
In this section we give a synopsis of the recurrence relations

the integralI i jk
(a) . Details of the derivation can be found in th

writer’s work @19#.

I l 11,m11,n
(a) 5

I l ,m11,n
(a) 2I l 11,m,n

(a)

a1
22a2

2 ,

I l 11,m,n11
(a) 5

I l ,m,n11
(a) 2I l 11,m,n

(a)

a1
22a3

2 ,

I l ,m11,n11
(a) 5

I l ,m,n11
(a) 2I l ,m11,n

(a)

a2
22a3

2 . (33)

~a1
21a!~2l 11!I l 11,m,n

(a) 1~a2
21a!~2m11!I l ,m11,n

(a) 1~a3
21a!~2n

11!I l ,m,n11
(a) 5~2l 12m12n11!I lmn

(a) .
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The starting values for the above recurrence relations
I 000

(a) ,I 100
(a) ,I 010

(a) ,I 001
(a) , which are given by the equations

I 000
(a)5

2

Aa1
22a3

2
F~u,k!,

I 100
(a)5

2

~a1
22a2

2!Aa1
22a3

2
@F~u,k!2E~u,k!#,

I 010
(a)5

22

~a1
22a2

2!Aa1
22a3

2
F~u,k!1

2Aa1
22a3

2

~a1
22a2

2!~a2
22a3

2!
E~u,k!

2
2

~a2
22a3

2!
A a3

21a

~a1
21a!~a2

21a!
, (34)

I 001
(l)5

22

~a2
22a3

2!Aa1
22a3

2
E~u,k!1

2

~a2
22a3

2!
A a2

21a

~a1
21a!~a3

21a!
,

whereF(u,k), E(u,k) are the incomplete elliptic integrals of th
first and second kinds, respectively, and

u5sin21Aa1
22a3

2

a1
21a

, k5Aa1
22a2

2

a1
22a3

2. (35)

The reader’s attention should be brought to the fact that the
three equations in~33! are not applicable to thoseI i jk

(a)s, whose
two of the three subscripts are simultaneously zero; suchI i jk

(a)s
need be modified using the fourth equation in~33!, after which the
first three equations can be utilized.

Equations~33! and ~34! define a set of recurrence relations b
means of which closed-form expressions forI i jk

(a) can be deduced
for all i , j ,k50,1,2,̄ . For the case wherexPV, a50 and hence
Eqs.~33!, ~34!, and~35! simplify:

I 0005
2

Aa1
22a3

2
F~u0 ,k!,

I 1005
2

~a1
22a2

2!Aa1
22a3

2
@F~u0 ,k!2E~u0 ,k!#,

I 0105
22

~a1
22a2

2!Aa1
22a3

2
F~u0 ,k!1

2Aa1
22a3

2

~a1
22a2

2!~a2
22a3

2!
E~u0 ,k!

2
2a3

a1a2~a2
22a3

2!
,

I 0015
22

~a2
22a3

2!Aa1
22a3

2
E~u0 ,k!1

2a2

a1a3~a2
22a3

2!
,

I l 11,m11,n5
I l ,m11,n2I l 11,m,n

a1
22a2

2 ,

I l 11,m,n115
I l ,m,n112I l 11,m,n

a1
22a3

2 , (36)

I l ,m11,n115
I l ,m,n112I l ,m11,n

a2
22a3

2 ,

a1
2~2l 11!I l 11,m,n1a2

2~2m11!I l ,m11,n1a3
2~2n11!I l ,m,n11

5~2l 12m12n11!I lmn ,

where the expression foru0 can be deduced from that foru by
putting a50 into the first equation in~35!, namely,

u05sin21
Aa1

22a3
2

a1
. (37)
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Note that there is an incorrect statement in Mura’s book~@9#, p.
93!, implying thatu is equal tou0 .

Thus, the following expressions are deduced using the re
rence relations~36!:

I 1105
I 0102I 100

a1
22a2

2 , I 1015
I 0012I 100

a1
22a3

2 , I 0115
I 0012I 010

a2
22a3

2 ,

I 2005
3I 1002a2

2I 1102a3
2I 101

3a1
2 , I 0205

3I 0102a1
2I 1102a3

2I 011

3a2
2 ,

I 0025
3I 0012a1

2I 1012a2
2I 011

3a3
2 , I 1115

I 0112I 101

a1
22a2

2 , (38)

I 2015
I 1012I 200

a1
22a3

2 , I 2105
I 1102I 200

a1
22a2

2 , I 0125
I 0022I 011

a2
22a3

2 ,

I 0215
I 0112I 020

a2
22a3

2 , I 1025
I 0022I 101

a1
22a3

2 , I 1205
I 0202I 110

a1
22a2

2 ,

I 3005
5I 2002a2

2I 2102a3
2I 201

5a1
2 , I 0305

5I 0202a1
2I 1202a3

2I 021

5a2
2 ,

I 0035
5I 0022a1

2I 1022a2
2I 012

5a3
2 .

5 Closure
The problem of determining the strain field within an isotrop

ellipsoidal inclusion with eigenstrains characterized by an a
trary order polynomial in the Cartesian coordinates of the po
of the inclusion is considered in the present article. Ferrers-Dy
theorem on the Newtonian potential of a heterogeneous ellip
as well as some of its further development by the present w
are used to deduce an explicit expression for the polynomial c
acterizing the induced strain field within the transformed ellipso
Using a consistent notation, the results are organized into an
gorithmic form especially suited for symbolic-numeric compu
tion by computer. The results are capable of extending our ab
to analyze various static and dynamic problems concerning e
soidal inclusions with nonuniform eigenstrains.
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Scission and Healing in a
Spinning Elastomeric Cylinder at
Elevated Temperature
When an elastomeric material is subject to sufficiently high temperature, macromole
network junctions can undergo time-dependent scission and re-crosslinking (healing
material system then consists of molecular networks with different reference stat
constitutive framework, based on the experimental work of Tobolsky, is used to dete
the evolution of deformation of a solid rubber cylinder spinning at constant ang
velocity at an elevated temperature. Responses based on underlying neo-Ho
Mooney-Rivlin, and Arruda-Boyce models, were solved numerically and compared
ferent amounts of healing were studied for each case. For neo-Hookean molecula
works, there may be a critical finite time when the radius grows infinitely fast and
cylinder ‘‘blows up.’’ This time depends on the angular velocity and the rate of re-c
linking. In addition, no solution was possible for angular velocities above a critical va
even without the effects of scission. Such anomalous behavior does not occur for Mo
Rivlin or Arruda-Boyce network response.@DOI: 10.1115/1.1485757#
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1 Introduction
The general form of the constitutive equation for nonlinear th

moelasticity used to represent the response of elastomeric ma
is expressed in terms of a temperature-dependent strain en
density function. Implicit in the formulation is the usual assum
tion that material response is due to a macromolecular mecha
that does not change during the thermomechanical process b
considered. Tobolsky@1# presented experimental results, howev
indicating that when the temperature becomes high enoug
change can occur in the macromolecular network. This mec
nism consists of scission and subsequent re-cross linking of m
romolecular network junctions. The process is time-dependent
can result in substantial changes in mechanical response and
manent set upon removal of applied loads.

Tobolsky’s results show that the nonlinear theory of th
moelasticity applies provided the temperature is maintained be
a critical value. When this temperature is exceeded, scission
re-cross linking of network junctions~referred to hereafter a
‘healing’! occur which requires the development of a new con
tutive theory. In previous work, Wineman and Rajagopal@2# and
Rajagopal and Wineman@3# developed a constitutive framewor
which applies when deformations are large enough to cause s
ion. By contrast, the present work uses this framework to exp
a constitutive theory that addresses temperature-induced sci
and healing.

The problem of a rotating rubber cylinder has attracted the
terest of a number of authors~see Horgan and Saccomandi@4# and
Chadwick et al.@5#!. A spinning rubber cylinder represents a ve
simple model of an automobile or aircraft tire, recognizing th
the actual case likely involves nonuniform temperature fie
which we will neglect here. Nevertheless, under certain opera
conditions, these tires can experience a substantial increas
temperature. With recent events involving the failure of autom

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April
2001; final revision, February 5, 2002. Associate Editor: K. R. Rajagopal. Discus
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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bile and aircraft tires, it is natural to study the problem of a sp
ning rubber cylinder using a constitutive theory which allows f
scission and healing at increased temperatures.

Section 2 begins with a presentation of the constitutive the
for the response of rubber that undergoes temperature-ind
scission and re-cross linking. The problem of a rotating rub
cylinder is defined in Section 3, which reduces to an equation
the axial stretch ratio. The general constitutive framework of S
tion 2 allows the user to choose a specific underlying thermoe
tic model. Responses based on neo-Hookean, Mooney-Rivlin,
Arruda-Boyce models, in turn, are studied for the spinning cyl
der problem in Section 4. Results are illustrated with numeri
examples, and comparisons are made for the different model

2 Constitutive Framework
In the experiments conducted by Tobolsky@1#, a rubber strip at

room temperature was subjected to a fixed uniaxial stretch
then held at a higher fixed temperature for some time interval
temperatures aboveTcr ~say 100°C!, called the chemorheologica
temperature range, the stress was observed to decrease with
At the end of the time interval, the stress was removed and
specimen was returned to its original temperature. Tests were
ried out for different stretches, temperatures and time interv
The decrease in tensile stress with time and the permanent st
were measured. The data were analyzed assuming neo-Hoo
behavior, for which the relation between tensile~Cauchy! stress
s(t) and uniaxial stretch ratiol is

s~ t !52n~ t !kTS l22
1

l D (1)

whereT is the absolute temperature,k is the Boltzmann constant
andn(t) is the current cross link density. It was concluded that
decrease ins(t) was due to scission of molecular network cro
links, resulting in a decrease inn(t). The permanent stretch wa
due to a new network which formed in the stretched state~heal-
ing!. The stress-stretch relation for the system back at the orig
low temperature consisting of the two networks was assume
be

s~ t !52n1kTS l22
1

l
D 12n2kTF S l

l̂
D 2

2S l̂

l
D G (2)
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wherel̂ is the stretch ratio of the original network held at the hi
temperature,n1 is the cross link density of the original network
the end of the test, andn2 is the cross link density of the new
network. The second term in~2! expresses the assumption that t
new network is formed stress free when the stretch ratio in
original network isl̂. Tobolsky’s data also suggested thatn1 and
n2 are independent of the stretch ratiol̂ up to a stretch ratio of
about 4. It was also assumed~Tobolsky @1#, and Tobolsky et al.
@6#! that all broken molecular cross links reform to produce a n
network in a stress free state. That is, there is conservatio
cross links,n11n25n(0), which we hereafter refer to as com
plete healing. The validity of this assumption depends on the
ticular chemistry of the rubber being considered.

Neubert and Saunders@7# carried out tests similar to those o
Tobolsky, but for a pure shear deformation. They measured
manent biaxial stretch after removal of stress and reduction of
temperature, and found that predictions based on a neo-Hoo
model led to inaccurate predictions of permanent set. A Moon
Rivlin material model led to better agreement with measured p
manent biaxial stretch. Fong and Zapas@8# improved the agree-
ment by using the Rivlin-Saunders model~@9#!.

Using the uniaxial relations~1! and ~2! as a guide, a three
dimensional constitutive framework is developed as follows. C
sider a rubbery material in a stress free reference configuratio
a low temperatureT0 . It is assumed that there is a range of d
formations and temperatures in which the material respons
essentially incompressible, isotropic and nonlinearly elastic. Ifx is
the position at current timet of a particle located atX in the
reference configuration, the deformation gradient is defined aF
5]x/]X. The left Cauchy-Green tensor isB5FFT. The Cauchy
stresss is given by

s52p0I1s0~B,T!52p0I12W1
0B22W2

0B21 (3)

wherep0 arises from the constraint that deformations are iso
oric, I 1 ,I 2 are invariants ofB and W1

05]W0/]I 1 and W2
0

5]W0/]I 2 are partial derivatives of the strain energy dens
W0(I 1 ,I 2 ,T) associated with the original material.

For low temperatures,T,Tcr , no scission occurs. All of the
material has its original reference state and the total stress is g
by ~3!. At time t50 the temperature is increased to a high te
perature,T>Tcr , and scission of the original microstructural ne
work is assumed to occur continuously in time. A scalar-valu
functiona(t)>0 is introduced, which represents the rate at wh
volume fraction of new network is formed at timet. Thus,a(t)dt
is interpreted as the volume fraction of new material that
formed during the time interval fromt to t1dt. The volume frac-
tion of original network remaining at timet is denoted asb(t).
b(t)P@0,1# and is a monotonically decreasing function oft. For
the sake of simplicity and consistent with Tobolsky’s obser
tions, it is assumed thata(t) and b(t) do not depend on the
deformation. He showed for experiments under uniaxial extens
that this is reasonable provided the stretch remains less than
4. In addition, it is assumed that the rate of formation of n
networks is given by

a~ t !52h
db~ t !

dt
, (4)

wherehP@0,1# is a scalar parameter that depends on the part
lar rubber system being considered. Tobolsky’s assumption of
work conservation corresponds to complete healing, orh51.
Complete scission, by contrast, occurs with no new netw
formation and can be modeled withh50. The work of Tobolsky
does not address whether a time lag exists between scission
re-cross-linking. Accordingly, in the absence of experimental d
on this point, Eq.~4! neglects any time lag between scission a
healing.

Now consider an intermediate timet̂P@0,t# and the corre-
sponding deformed configuration of the original material. Due
Journal of Applied Mechanics
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the formation of new cross links, a network is formed in t
interval from t̂ to t̂1d t̂ whose reference configuration is the cu
rent configuration at timet̂ . As suggested by Tobolsky@1# and
Tobolsky et al.@6#, this is assumed to be an unstressed configu
tion for the newly formed network. Under subsequent deform
tion, the motion of the newly formed material network coincid
with the motion of the original material network. Stress arises
this newly formed material network due to its deformation relat
to its unstressed configuration at timet̂ . At the later timet, the
material formed at earlier timet̂ has the relative deformation gra
dient F̂5]x/] x̂, where x̂ is the position of the particle in the
configuration corresponding to timet̂ andx is its position at time
t.

For simplicity, the new material network is also assumed
respond as an incompressible, isotropic, nonlinear elastic mate
The left Cauchy-Green tensorB̂5F̂F̂T is introduced for relative
deformations of this network. The constitutive equation for t
network formed at timet̂ is then given by

s̄52 p̂I1ŝ~B̂,T!52 p̂I12Ŵ1B̂22Ŵ2B̂21 (5)

wherep̂ arises from the constraint that deformations are isocho
Î 1 , Î 2 are invariants ofB̂, andŴ15]Ŵ/] Î 1 andŴ25]Ŵ/] Î 2 are
partial derivatives of energy density of the new netwo
Ŵ( Î 1 , Î 2 ,T). In general, the energy density associated with
newly formed material can differ from that associated with t
original material.

The total current stress in the material is taken as the supe
sition of the stress in the remaining material of the original n
work and the stress in new networks. Thus,

s52pI1bs0~B,T!1E
0

t

a~ t̂ !ŝ~B̂,T!d t̂ (6)

where p, b, B, T, s are evaluated at the current timet. The
term 2pI incorporates the corresponding terms in~3! and ~5!.
The stress in the original network,s0(B,T), is expressed in terms
of W0(I 1 ,I 2 ,T) by ~3!, and the stress developed in any new n
works, ŝ(B̂,T), is expressed in terms ofŴ( Î 1 , Î 2 ,T) by ~5!.

Although Tobolsky assumed the response of the original
newly formed networks to be neo-Hookean, Neubert and San
@7# and Fong and Zapas@8# considered other possibilities. Thu
W0(I 1 ,I 2 ,T) andŴ( Î 1 , Î 2 ,T) are left, as yet, unspecified.

3 Boundary Value Problem Formulation
The boundary value problem consists of a solid cylinder

radiusR0 , lengthL0 in its undeformed configuration, and uniform
mass densityr, which is spinning about its central axis with
constant angular velocityv ~see Fig. 1!. The temperature of the
cylinder is changed att50 to a constant, uniform high tempera
ture, T.Tcr , so that the material undergoes the scission-hea
process. This chemically based relaxation process and the
trifugal loading cause the dimensions of the cylinder to chan

Fig. 1 Reference and current configuration for spinning
cylinder
SEPTEMBER 2002, Vol. 69 Õ 603
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with time. The cylindrical coordinates of a point in the referen
and current configurations, are denoted by (R,Q,Z) and (r ,u,z),
respectively. It is assumed that plane sections remain plane
cylindrical surfaces deform into cylindrical surfaces, resulting i
deformation described by

r 5r ~R,t !, RP@0,R0#,

u5Q1vt, QP@0,2p!, (7)

z5l~ t !Z, ZP@0,L0#.

The material response is assumed to be isochoric. By conside
the volume bounded by a radial surface and the ends of the
inder in the reference and current configurations, it is found t

r ~R,t !5
R

Al~ t !
, (8)

wherel(t)P@0,1# is the axial stretch ratio. Accordingly, the cu
rent radius of the cylinder is

r 05
R0

Al~ t !
. (9)

The physical components of the deformation gradient of
original network with respect to cylindrical coordinates are giv
by

F~R,t !5F ]r

]R
~R,t ! 0 0

0
r ~R,t !

R
0

0 0 l~ t !

G
5F 1

Al~ t !
0 0

0
1

Al~ t !
0

0 0 l~ t !

G . (10)

The reference configuration of any new formed network at ti
t̂ is the configuration of the original network at timet̂ , and is
defined by

r̂ 5r ~R, t̂ !5
R

Al~ t !
, RP@0,R0#

û5Q1v t̂ , QP@0,2p! (11)

ẑ5l~ t̂ !Z, ZP@0,L0#.

The relation between the coordinates (r̂ ,û,ẑ) of a particle in the
configuration at timet̂ and its coordinates (r ,u,z) in the current
configuration is found by eliminating (R,Q,Z) in ~7!, ~8!, ~11!,
giving

r 5Al~ t̂ !

l~ t !
r̂ ,

u5 û1v~ t2 t̂ !,

z5
l~ t !

l~ t̂ !
ẑ. (12)

Since there is no relative motion between the network forme
time t̂ and the original network,~12! describes the deformation o
the network formed at timet̂ . The first equation of~12! arises
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from the condition that the volume of the newly formed netwo
bounded by a radial surface and the ends of the cylinder at timt̂
is the same as in the current configuration.

The physical components of the deformation gradient of
network formed at timet̂ with respect to cylindrical coordinate
are given by

F̂~ r̂ ,t !5F ]r

]r
~ r̂ ,t ! 0 0

0
r ~ r̂ ,t !

r̂
0

0 0 l~ t !

G
5FAl~ t̂ !

l~ t !
0 0

0 Al~ t̂ !

l~ t !
0

0 0 l~ t !/l~ t̂ !

G . (13)

Interestingly,F(R,t) and F̂( r̂ ,t) are independent of radial pos
tion.

The stress components are found by calculatingB(t) from ~10!
and B̂(t) from ~13! and substituting into the constitutive Eq.~6!.
SinceB(t) andB̂(t) are diagonal matrices, no shear stresses e
and the normal stresses can be written in the form

s rr 5suu52p1Frr ,

szz52p1Fzz. (14)

In the subsequent analysis, only the expression for the differe
Frr 2Fzz appears, which can be written

Fzz2Frr 5b~T,t !Fl~ t !22
1

l~ t !
G S 2W1

01
1

l~ t !
2W2

0D 1E
0

t

a~T, t̂ !

3F S l~ t !

l~ t̂ !
D 2

2
l~ t̂ !

l~ t !
G S 2Ŵ11

l~ t̂ !

l~ t !
2Ŵ2D d t̂. (15)

The scission-healing process is assumed to occur sufficie
slowly that inertia terms involving]2r /]t2 and ]2z/]t2 can be
neglected. Hence, in the expressions for the acceleration, t
terms are neglected and only the centripetal term is conside
The axial and circumferential components of the equations of m
tion reduce to

]p

]u
5

]p

]z
50, (16)

and the radial component becomes

]s rr

]r
52rv2r , r P@0,r 0~ t !#, (17)

where use has been made of~14!. Integrating~17! gives

s rr ~r 0~ t !,t !2s rr ~r ,t !52
rv2

2
@r 0~ t !22r 2#. (18)

The outer surface is traction-free at each time, so~17! reduces to

s rr ~r ,t !5
rv2

2
@r 0~ t !22r 2#. (19)

Combining~19! and~14! gives an expression for the scalar fieldp,

2p5
rv2

2
@r 0~ t !22r 2#2Frr . (20)

Substituting into~14! determines the axial normal stress,
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szz5
rv2

2
@r 0~ t !22r 2#1Fzz2Frr . (21)

Assuming that there is no resultant force on the ends of the
inder leads to a boundary condition satisfied in the weak sens

2pE
0

r 0~ t !

szzrdr 50. (22)

Integrating the axial stress~21!, then leads to the equation

Fzz2Frr 52
rv2

4
r 0~ t !2. (23)

In view of ~8!, ~23! reduces to

l~ t !@Fzz2Frr #52
rv2

4
R0

2. (24)

Substituting from~15! leads to

b~T,t !l~ t !Fl~ t !22
1

l~ t !
G S 2W1

01
1

l~ t !
2W2

0D 1l~ t !E
0

t

a~T, t̂ !

3F S l~ t !

l~ t̂ !
D 2

2
l~ t̂ !

l~ t !
G S 2Ŵ11

l~ t̂ !

l~ t !
2Ŵ2D d t̂52

rv2

4
R0

2,

(25)

a nonlinear Volterra integral equation for the axial stretch ra
l(t). Finally, dividing ~25! by the shear modulus for infinitesima
deformations of the original network,

m~T!52@W1
01W2

0# I 15I 253 , (26)

produces the nondimensional equation

b~T,t !l~ t !Fl~ t !22
1

l~ t !
G S w1

01
1

l~ t !
w2

0D 1l~ t !E
0

t

a~T, t̂ !

3F S l~ t !

l~ t̂ !
D 2

2
l~ t̂ !

l~ t !
G S ŵ11

l~ t̂ !

l~ t !
ŵ2D d t̂52V2, (27)

in which V5v/v0(T), v0
2(T)54m(T)/rR0

2, wa
052Wa

0/m and
ŵa52Ŵa /m, a51,2.

Furthermore, a nondimensional temperature and nondim
sional time can be defined as follows. According to Tobolsky@1#,
the rate of scission for many rubbery materials is given by

b~T,t !5exp@2a~T!t#, (28)

where

a~T!5
k

h
T expF2

Eact

RTG . (29)

In ~29!, k is Boltzmann’s constant (1.38066310223 J/K), h is
Planck’s constant (6.62608310234 J-s),R is the gas constant, an
Eact is an activation energy. For the particular material in Tob
sky’s experiments,Eact530.4 kcal/mol ~127.2 kJ/mol!. In addi-
tion, Boltzmann’s constant can be written asR/NA , where NA

56.02331023/mol is Avogadro’s number. Definingu5RT/Eact as
a nondimensional temperature, allows~29! to be restated as

a~u!5
Eact

hNA
u expF2

1

uG . (30)

Introducing a characteristic time for scission,t051/a, leads to the
definition of a nondimensional time,t5t/t05at. According to
~30!, the characteristic time for scission is related to the non
mensional temperature as
Journal of Applied Mechanics
yl-
e as

io,
l

en-
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di-

t05
hNA

Eact

exp@1/u#

u
. (31)

This characteristic time is plotted versus actual temperature
Tobolsky’s material in Fig. 2. Note the extreme temperatu
dependence on this characteristic time. For example, the cha
teristic time is about 24 hrs for 100°C, but a 20°C increase gi
a value of only 2.7 hrs, an order of magnitude reduction.

Finally, including the nondimensional time in~27! gives the
governing equation

e2t@l~t!321#S w1
01

1

l~t!
w2

0D1hl~t!

3E
0

t

e2 t̂F S l~t!

l~ t̂ ! D
2

2
l~t̂ !

l~t!G S ŵ11
l~t̂ !

l~t!
ŵ2Ddt̂52V2. (32)

4 Numerical Results
The response of the spinning cylinder to elevated temperat

for which scission-healing processes occur, is now investiga
for three different material models, neo-Hookean, Mooney-Riv
and Arruda-Boyce. In the absence of experimental data to
contrary, we will assume thatw05ŵ, i.e., the newly formed ma-
terial has the same properties as the original material~this would
be an interesting issue for further study!. The nonlinear Volterra
integral Eq.~32! for l~t! was solved numerically by discretizin
the integral term in time using the trapezoidal rule and solving
resulting nonlinear algebraic equation by Newton iteration. T
time increment was chosen sufficiently small such that the t
evolution of l~t! had converged. A time increment ofDt
51/100 produced converged results. For each material model
response was evaluated for three cases: no healing (h50), partial
healing (h50.5), and complete healing (h51).

4.1 Neo-Hookean Response.Consider first the respons
when both the original network and the newly formed netwo
are neo-Hookean. In this case, the shear modulus is constan
fined by 2W1

05m, and W2
050. Substituting the material param

eters

w1
05ŵ151, w2

05ŵ250 (33)

into ~32! gives the governing equation

l~t!3Fe2t1hE
0

t

e2 t̂l~ t̂ !22dt̂G
2Fe2t1hE

0

t

e2 t̂l~ t̂ !dt̂G52V2. (34)

Fig. 2 Characteristic time for scission and healing for Eact
Ä127.24 kJ Õmol
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Before considering any numerical results, several deduct
can be made regarding~34!. It is instructive to first consider the
case whenh50, that is, the original network undergoes scissi
but there is no subsequent cross linking. The governing Eq.~34!
reduces to

l~t!3215e2tV2. (35)

At t50, the axial stretch ratio is given by

l~0!32152V2. (36)

It is, therefore, assumed that

V,1, or v2,
4m

rR0
2 , (37)

a necessary and sufficient condition to ensure a physically m
ingful solution (l(0)P@0,1#) for a neo-Hookean material. Thi
observation was made previously by Horgan and Saccomand@4#
and Chadwick et al.@5#. Furthermore, there is a subsequent tim
t0* given by

t0* 522 ln V, (38)

when the length of the cylinder reduces to zero and the ra
becomes infinite. It follows from~35! that dl/dt→2` as t
→t0* . The radial increase becomes infinite according to~9!, and
time t0* can be interpreted as a critical runaway time.

Next, let 0,h<1, which allows for the formation of new net
works. The right-hand equality represents the situation when
original network is completely transformed into new networks
follows from ~34! that

l~t!35

e2t1hE
0

t

e2 t̂l~ t̂ !dt̂2V2

e2t1hE
0

t

e2 t̂l~ t̂ !22dt̂

(39)

and

dl~t!

dt
5

2e2t@12l~t!3#

3l~t!2Fe2t1hE
0

t e2 t̂

l~ t̂ !2 dt̂G . (40)

At t50, ~39! reduces to~36!. Equation~37! is still needed to
ensure a physically meaningful solution. Sincel(0),1 and~40!
implies dl/dt,0, l(t),1 and is monotonically decreasing
Next, consider the first two terms in the numerator of~39!. Their
time derivative is@211hl(t)#e2t. The inequality 0,h<1,
and the fact thatl(t),1, indicates that@211hl(t)#e2t<0.

There are two cases to consider:V near unity andV near zero.
First, if V'1, the first two terms in the numerator will monoton
cally decrease and there may be a time, denotedth* , when the
stretch ratio reaches zero. Consequently,th* satisfies

e2th* 1hE
0

th*
e2 t̂l~ t̂ !dt̂2V250. (41)

Combining~38! and ~41!, gives

e2th* 5e2t0* 2hE
0

t0*
e2 t̂l~ t̂ !dt̂. (42)

The integral is positive, which implies

th* .t0* . (43)

Rewriting the denominator of~40! as

l~t!2e2t1hE
0

t

e2 t̂
l~t!2

l~t̂ !2 dt̂, (44)
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and taking the limit ast→th* , l(t)→l(th* )50, the integral
vanishes in the limit and the denominator approaches zero. It
lows from ~40! that dl/dt→2` ast→th* . These results show
that although new networks are formed, there may still be a c
cal runaway timeth* . The consequence of the formation of ne
networks is to increase the critical runaway timeth* . This implies
that there is always a critical runaway time for anyh for V ap-
proaching unity.

The other case is where the angular velocity is small (V!1).
In this case the numerator of~39! may not vanish, leaving 0
,l(t),1. Then, dl/dt→0 according to ~40!, and a finite
steady-state value is possible,l(t)→l`.0.

Figure 3 shows the numerical results for the evolution of
axial stretch ratiol~t! for a neo-Hookean material undergoin
scission healing. The case of no healing (h50), or pure scission,
is shown in Fig. 3~a! for different values of the nondimensiona
angular velocityV between 0.5 and 0.9. The axial stretch starts
an initial value less than one and then decreases monotonical
zero as expected, consistent with the above analysis. AsV in-
creases,t0* decreases. The case of partial healing (h50.5), where
one half of network junctions that undergo scission reform,
shown in Fig. 3~b!. For large values ofV the axial stretch col-
lapses to zero, but for small values~seeV50.5! the axial stretch
decreases but approaches a nonzero steady state value. The c

Fig. 3 Evolution of axial stretch for Neo-Hookean material: „a…
no healing „hÄ0…, „b… partial healing „hÄ0.5…, „c… complete
healing „hÄ1…
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complete healing (h51), where all network junctions that un
dergo scission reform, is shown in Fig. 3~c!. The axial stretch
collapses to zero for largeV and approaches a steady state va
for small V, but the limiting V between these two behaviors
larger~between 0.7 and 0.8! than for the partial healing case. Fo
large angular velocity (V'1), the critical collapse time (th* ) gets
smaller asV gets closer to unity.

It is interesting that a nonzero steady state valuel` can be
achieved even for moderate values ofV. Whenl(t)→l` , ~34!
can be written as

l`
3 E

0

`

e2 t̂l~ t̂ !22dt̂2E
0

`

e2 t̂l~ t̂ !dt̂52V2/h, (45)

a cubic equation forl` akin to~36!, once the integrals are known
Note that, since 0,l( t̂),1, the first integral is larger than th
second one (*0

`e2 t̂l( t̂)22dt̂.*0
`e2 t̂l( t̂)dt̂), which allows

~45! to be satisfied for 0,l`,1. This is a result of the assump
tion that no time lag exists between scission of original netwo
and formation of new networks and the assumption that new
works are not allowed to undergo scission again. These ac
stabilize the material against structural collapse.

4.2 Mooney-Rivlin Response. Consider now the respons
when both the original network and the newly formed netwo
are Mooney-Rivlin materials. In this case, the initial shear mo
lus is defined by 2W1

012W2
05m. W1

0 andW2
0 are independent o

B and Ŵ1 and Ŵ2 are independent ofB̂. The ratio of the two
Mooney Rivlin constants is defined asb5W2

0/W1
0. Noting that

w1
051/(11b) andw2

05b/(11b) allows ~32! to be written as

e2t @l~t!321#S 11
1

l~t!
b D1hl~t!

3E
0

t

e2 t̂F S l~t!

l~ t̂ ! D
2

2
l~t̂ !

l~t!G S 11
l~t̂ !

l~t!
b Ddt̂

52V2~11b!. (46)

At t50,l(0) is the solution of

@12l~0!3#S 11
b

l~0! D5V2~11b!. (47)

In contrast to~36!, the left-hand side of~47! becomes unbounde
asl(0)→0 because of the nonzero constantW2

0 in the Mooney-
Rivlin response. Therefore, the solutionl(0)50 no longer exists.
This can be seen in Fig. 4, which shows the initial axial stre
ratio for different angular velocitiesV and different values ofb.
Note that forb50, which is a neo-Hookean material,l(0)→0 as
V→1. For nonzerob, however,l~0! never reaches zero for an

Fig. 4 Dependence of initial axial stretch for Mooney-Rivlin
material with nondimensional angular velocity, V, for different
ratios of MR constants, bÄW2

0ÕW1
0
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V. Therefore, no restriction onV, such as~37!, is needed to obtain
physically meaningful results for a Mooney-Rivlin material.

At each time, the left-hand side of~46! becomes unbounded a
l(t)→0 because of the terms containingb associated with
Mooney-Rivlin response. A nonzero positive solutionl~t! can be
found without imposing restrictions ofV2. Accordingly, for
Mooney-Rivlin response, there does not exist a finite time wh
the axial stretch vanishes and the radius becomes infinitely la

Horgan and Saccomandi@4# considered the equivalent of~47!
for the case of nonlinear elasticity whenW2

0 and W1
0 depend on

the first invariant ofB. They showed that for certain forms ofW1
0

~see Gent@10#, determined from finite extensibility conside
ations, and Knowles@11#, called the generalized neo-Hookea
model! the axial stretch would always be nonzero. Thus, the n
physical response found for neo-Hookean material does not o
for many other material models. This anomalous behavior se
to be a peculiarity of the neo-Hookean material model. It can
expected that there would not exist a finite time when the a
stretch vanishes if most any other model was used to represen
response of original and newly formed networks in a constitut
theory for scission healing.

Figure 5 shows the numerical results for the evolution of
axial stretch ratiol~t! for a Mooney-Rivlin material undergoing
scission-healing. A typical value ofb50.2 was used. The case o
no healing (h50), or pure scission, is shown in Fig. 5~a! for
different values of the nondimensional angular velocityV be-

Fig. 5 Evolution of axial stretch for Mooney-Rivlin material
with bÄ0.2: „a… no healing „hÄ0…, „b… partial healing „h
Ä0.5…, „c… complete healing „hÄ1…
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tween 0.5 and 1. The axial stretch starts at an initial value
than one and then decreases but only asymptotically approa
zero. The case of partial healing (h50.5) is shown in Fig. 5~b!.
For large values ofV the axial stretch approaches zero, but f
small values the axial stretch approaches a nonzero steady
value. The case of complete healing (h51) is shown in Fig. 5~c!.
Again, the axial stretch approaches zero for largeV and ap-
proaches a steady state nonzero value for smallV, but the transi-
tion value ofV is larger.

4.3 Arruda-Boyce Response. As a final case, the respons
when both the original network and the newly formed netwo
behave as Arruda-Boyce materials~see@12#! is considered. As-
suming incompressibility, the strain energy density of a three-te
Arruda-Boyce material is given by

W5mF1

2
~ I 123!1

1

20lm
2 ~ I 1

2232!1
11

1050lm
4 ~ I 1

3233!G (48)

wherem is the initial shear modulus andlm is the locking stretch
ratio, a material parameter, both of which could be temperat
dependent. In this case,W1

0 is not constant, butW2
050. Substitut-

ing the material parameter

w1
0511

1

5lm
2 I 11

11

175lm
4 I 1

2 (49)

with I 152/l(t)1l(t)2 and a similar expression forŵ1 with Î 1

52l( t̂)/l(t)1@l(t)/l( t̂)#2 and then into~32!, produces the
governing equation.

The initial axial stretch solutionl~0! is plotted in Fig. 6 as a
function of angular velocitiesV for different values oflm . Simi-
lar to the Mooney-Rivlin case,l~0! is greater than zero for al
values ofV, although one can see that as the material param
lm gets largel~0! approaches zero whenV.1.

Figure 7 shows the numerical results for the evolution of
axial stretch ratiol~t! for Arruda-Boyce material undergoin
scission healing. A typical value oflm53 was used. The case o
no healing (h50), or pure scission, is shown in Fig. 7~a! for
different values of the nondimensional angular velocityV be-
tween 0.5 and 1. The axial stretch starts at an initial value
than one and then decreases, but only asymptotically approa
zero. Qualitatively, the response is similar to the Mooney-Riv
case in Fig. 5~a!. The cases of partial healing (h50.5) and com-
plete healing (h51) are shown in Fig. 7~b! and Fig. 7~c!. Again,
the qualitative response is similar to that of the Mooney-Riv
case, but the transition from a long time steady state behavior
collapse behavior is more distinct in the Arruda-Boyce case. T
case also confirms that the anomalous collapse behavior o
neo-Hookean case can be avoided by including a nonlinear p
nomial dependence onI 1 in the energy density.

Fig. 6 Dependence of initial axial stretch for Arruda-Boyce
material with nondimensional angular velocity, V, for different
locking stretch ratios, lm
608 Õ Vol. 69, SEPTEMBER 2002
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5 Summary and Conclusions
The boundary value problem of a spinning elastomeric cylin

undergoing temperature-induced scission and re-crosslinking
studied. The problem reduces to a nonlinear Volterra equation
the axial stretch ratio. The general constitutive framework allo
the user to choose a specific underlying thermoelastic mode
the original and healed microstructural material networks. R
sponses based on neo-Hookean, Mooney-Rivlin, and Arru
Boyce models, were solved numerically and compared. Differ
amounts of re-crosslinking~healing! were studied for each case
Anomalous behavior was noted when using the neo-Hook
model, in that it was susceptible to premature and catastro
collapse. In fact, no solution was possible for angular velocit
above a critical value, even without the effects of scission. T
Mooney-Rivlin and Arruda-Boyce cases, although quantitativ
different, behaved qualitatively similar showing similar tren
with angular velocity and healing rate. The study confirmed t
the anomalous collapse behavior of the neo-Hookean case ca
avoided by including a dependence onI 2 in the energy density, as
in the Mooney-Rivlin case, or by including a nonlinear depe
dence onI 1 , as in the Arruda-Boyce case.

Fig. 7 Evolution of axial stretch for Arruda-Boyce material
with lmÄ3: „a… no healing „hÄ0…, „b… partial healing „hÄ0.5…,
„c… complete healing „hÄ1…
Transactions of the ASME
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Dynamic Condensation and
Synthesis of Unsymmetric
Structural Systems
In this paper model reduction of an unsymmetric and damped structural sy
is presented using a two-sided dynamic condensation technique. The method
iterative one and essentially utilizes orthonormalized complex eigenvectors o
unsymmetric system. The eigensolution of the reduced order model with specified m
degrees-of-freedom is obtained by Lanczos algorithm. The model reduction proc
is further utilized in substructure synthesis and eigenvalue analysis of large
unsymmetric systems. Application of the condensation technique is illustrated via
example problems of rotor bearing systems.@DOI: 10.1115/1.1432988#
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1 Introduction
For eigensolution and response analysis of large structural

tems, use of the complete analytical/discrete parameter mode
sults in considerable computer run time and huge storage req
ment as well. It is imperative that there is the need for reduc
order models to represent such large size systems especially
efficient use of available computer disk space. Dynamic cond
sation methods reported in literature~@1–3#! are essentially modi-
fied versions of the Guyan~@4#! reduction technique. Recent ad
vancements in dynamic condensation approach are due to S
and Singh@5# and Qu and Fu@6#. The two approaches are iterativ
in nature. The initial approximation of the Guyan condensat
matrix relating the chosen master degree-of-freedom and the s
degree-of-freedom is updated till desired convergence is achie
While the iterative approach of Suarez and Singh is valid
standard eigenproblem, the method proposed by Qu and F
valid for general eigenproblem. All the above dynamic conden
tion methods are applicable only for handling undamped symm
ric systems with symmetric mass and stiffness matrices. Kane
Torby @7# described a method to obtain a reduced-order mode
unsymmetric systems such as rotating systems. However,
method suffers from the disadvantage of the necessity to ha
prior eigensolution of the original system.

A computational procedure to effectively condense unsymm
ric systems is presented in this paper. It is a two-sided proce
in that it implicitly utilizes both the left and right eigenvectors
the system. The procedure is iterative and avoids explicit der
tion of the eigenvectors during the iteration process at each s
The method finally yields two condensation matrices that re
the master and slave degrees-of-freedom. Further, one impo
feature of the proposed method is that element matrices perta
to any discrete springs/dampers present in the system initially
main out of the dynamic condensation technique and are atta
to the reduced-order model matrices with due consideration to
boundary condition compatibility. This feature is further utilize
in obtaining reduced-order models for complicated unsymme
systems by substructure synthesis. Glasgow and Nelson@8# and Li
and Gunter@9# have obtained reduced-order models for rot
bearing systems using component mode synthesis. However,

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
7, 2000; final revision, August 10, 2001. Editor: N. C. Perkins. Discussion on
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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methods invariably require an eigenvalue analysis of each com
nent. Substructure synthesis as proposed in this paper conde
each substructure individually. Discrete/intermediate link e
ments, if any, that are present in the system are kept out of
condensation process initially. The use of the dynamic conde
tion technique and substructure synthesis procedure develop
this paper is illustrated via two example problems of rotor-bear
systems.

2 Unsymmetric Structural System and Discrete Pa-
rameter Model

A finite element model of a structural system withN degree-of-
freedom is governed by the following equations of motion:

@M #$ẍ%1@C#$ẋ%1@K#$x%5$F~ t !% (1)

where$F% is the vector of external forces.@M#, @C#, and@K# are the
system mass, damping, and stiffness matrices of the ordeN
3N. These matrices may be symmetric, skew-symmetric, or
symmetric. The standard/general eigenvalue problem~@5,6#! ap-
plies to undamped systems with symmetric matrices. On the o
hand, unsymmetric systems are difficult to handle by the stand
procedures. To obtain the eigensolution for such a unsymme
system, one procedure is to recast Eq.~1! into first-order form in
2N32N state space as

@M̄ #$ ẏ%1@K̄#$y%5$0% (2)

where

@M̄ #5F @0# 2@M #

@M # @C#
G ,

@K̄#5F @M # @0#

@0# @K#
G and $y%5$ẋ,x%T.

The superscriptT stands for transpose of a matrix.
The eigenvalue problem corresponding to Eq.~2! is now given

by

@K̄#@FR#5@M̄ #@FR#@l# (3)

for right eigenvectors@FR# and the adjoint eigenvalue problem b

@FL#T@K̄#5@l#@FL#T@M̄ # (4)

for left eigenvectors@FL#. @l# is the diagonal matrix of complex
eigenvalues of the unsymmetric system.

An eigenvalue solver using, for example, a two-sided Lanc
algorithm ~@10#! yields complex eigenvaluesl and the left and
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the
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E
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right complex eigenvectors@FL# and @FR#. These eigenvectors
satisfy the following bi-orthogonality relationships:

@FL#T@M̄ #@FR#5@ I # and @FL#T@K̄#@FR#5@l#. (5)

3 Dynamic Condensation
To start with the dynamic condensation, let the nodal displa

ment degree-of-freedom vector$x% be partitioned into two groups
One is the master degree-of-freedom that are to be retained
the other, the slave degree-of-freedom to be eliminated during
condensation process. Let the number of master degree
freedom be ‘‘m.’’ The number of the slave degree-of-freedom
henceN-m. Let the matrices@M#, @C#, and@K# be partitioned ac-
cording to these master and slave degrees-of-freedom. The v
$y% is now ordered in the form$ẋm ,xm ,ẋs ,xs% with subscriptsm
and s indicating master and slave degrees-of-freedom, resp
tively. If the augmented matrices@M̄ # and @K̄# are accordingly
partitioned, keeping the master velocity and displacem
degrees-of-freedom together, the eigenvalue problem in Eqs~3!
and ~4! takes the form

F bK̄mmc, bK̄msc
@K̄sm#, @K̄ss#

G H @Fm
R#

@FS
R# J 5F bM̄mmc, bM̄msc

@M̄ sm#, @M̄ ss#
G H @Fm

R#

@Fs
R# J @l#

(6)

F @K̄mm#, @K̄ms#

@K̄sm#, @K̄ss#
GTH @Fm

L #

@Fs
L# J 5F @M̄mm#, @M̄ms#

@M̄ sm#, @M̄ ss#
GTH @Fm

L #

@Fs
L# J @l#T

(7)

where

@K̄mm#5F bMmmc, @0#

@0#, @Kmm#
G , @K̄ms#5F bMmsc, @0#

@0#, @Kms#
G ,

@K̄sm#5F @Msm#, @0#

@0#, @Ksm#
G and @K̄ss#5F @Mss#, @0#

@0#, @Kss#
G

(8)

@M̄mm#5F @0#, bMmmc
2@Mmm#, 2@Cmm#

G ,
@M̄ms#5F @0#, bMmsc

2@Mms#, 2@Cms#
G ,

@M̄ sm#5F @0#, @Msm#

2@Msm#, 2@Csm#
G and

@M̄ ss#5F @0#, @Mss#

2@Mss#, 2@Css#
G . (9)

Expanding the lower part of the equations in Eq.~6! one obtains

@K̄sm#@Fm
R#1@K̄ss#@Fs

R#5@M̄ sm#@Fm
R#@l#1@M̄ ss#@Fs

R#@l#.
(10)

Similar expansion from Eq.~7! results in

@K̄ms#
T@Fm

L#1@K̄SS#
T@Fs

L#5@M̄ms#
T@Fm

L#@l#T

1@M̄ ss#
T@Fs

L#@l#T. (11)

Let the slave part of the right and left eigenvectors@Fs
R# and

@Fs
L# be expressed in terms of the corresponding master deg

of-freedom part of the right and left eigenvectors@Fm
R# and@Fm

L #
as

@Fs
R#5@R#@Fm

R# and @Fs
L#5@S#@Fm

L #. (12)

Using the transformation matrices@R# and @S# in Eqs.~10! and
~11!, one obtains the following equations for@R# and @S#:
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@R#5@K̄ss#
21@~@M̄ sm#1@M̄ ss#@R# !@Fm

R#@l#@Fm
R#212@K̄sm##

(13)

@S#5@K̄ss
T #21@~@M̄ms#

T1@M̄ ss#
T@S# !@Fm

L #@l#T@Fm
L #212@K̄ms

T ##.
(14)

Equations~13! and~14! contain the unknown matrices@R# and
@S# implicitly. Once @R# and@S# are obtained, the bi-orthogonalit
relationships in Eq.~5! yield the reduced-order model for th
given system in the following form of eigenvalue problem:

@KR#@FmR#5@MR#@Fm
R#@l#

and

@Fm
L #T@KR#5@l#@Fm

L #T@MR#. (15)

The reduced order (2m32m) stiffness and mass matrices@KR#
and @MR# are given by

@KR#5@K̄mm#1@K̄ms#@R#1@S#T@K̄sm#1@S#T@K̄ss#@R# (16)

@MR#5@M̄mm#1@M̄ms#@R#1@S#T@M̄ sm#1@S#T@M̄ ss#@R#.
(17)

The matrices@KR# and @MR# satisfy the orthogonality relation
ships given by

@Fm
L #T@MR#@Fm

R#5@ I # and @Fm
L #T@KR#@Fm

R#5@l#.
(18)

One can adopt an iterative procedure to first solve for@R# and
@S# from Eqs.~13! and~14!. The iterative procedure is started wit
initial approximation:

@R#52@K̄ss#
21@K̄sm# and @S#52@K̄ss

T #21@K̄ms#
T. (19)

According to Eqs.~13! and~14! it is required that an eigenvalu
solution is to be obtained at each iteration step. However, from
two orthogonality relationships in Eq.~18! the eigensolution can
be avoided at each step if the following substitutions are effec
in Eqs.~13! and ~14!:

@Fm
R#@l#@Fm

R#215@MR#21@KR# and @Fm
L #@l#T@Fm

L #21

5@MR#2T@KR#T. (20)

With the above substitutions, the transformation matrices@R#
and @S# and subsequently@KR# and @MR# are improved over a
number of steps, which can be termed as one stage. At the en
a stage, the eigensolution with the use of the reduced-order m
matrices@KR# and @MR#, can be obtained from Eq.~15!. The
solution is compared with that obtained at a previous stage
testing the convergence. The criterion to terminate the itera
process is chosen to be

ul i 112l i u
l i 11

<« (21)

where« is the convergence tolerance required andl i 11 andl i are
the eigenvalues obtained ati th andi 11th iteration.

4 Substructure Synthesis
The two-sided dynamic condensation technique as descr

above condenses the internal slave degree-of-freedom and in
eral can be considered as a part of substructuring approach. I
master degree-of-freedom are specified for each of the subs
tures that constitute a structural system~Fig. 1!, the mass and
stiffness matrices in Eqs.~16! and ~17! define a corresponding
reduced-order model.

The reduced-order matrices@MR# and @KR# of each substruc-
ture in Eqs.~16! and~17! are of order 2m32m. The correspond-
ing master degree-of-freedom vector of order 2m includes the
velocity degree-of-freedom also. Thus@MR# and @KR# are of the
form
SEPTEMBER 2002, Vol. 69 Õ 611
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@MR#5F @0#, @MmmR#

2@MmmR#, 2@CmmR#
G and

@KR#5F @MmmR#, @0#

@0#, @KmmR#
G . (22)

In Eq. ~22!, @MmmR#, @CmmR# and @KmmR# are the reduced-
order mass, damping, and stiffness matrices of orderm3m. The
matrices defining coupling elements, if any,~Fig. 1! can be as-
sembled at this stage. For example, if the structural system
sists of two substructuresI andK and@KIK # represent the stiffnes
matrix relating the internal forces between the connecting deg
of-freedom of these substructures, the coupled equations of
tion can be expressed as

F @MmmR
I #, @0#

@0#, @MmmR
K #

G H $ẍm
I %

$ẍm
K%J 1F @CmmR

I #, @0#

@0#, @CmmR
K #

G H $ẋm
I %

$ẋm
K%J

1H F @KmmR
I #, @0#

@0#, @KmmR
K #

G H $xm
I %

$xm
K%J 1@KIK #H $xI

c%
$xc

K% J J 5$0%.

(23)

In Eq. ~23! the superscriptsI and K stand for theI th and Kth
substructure, respectively.$xm

I % and $xK
m% represent the maste

degree-of-freedom vector of the two substructures.$xI
c% is the

vector of common degree-of-freedom between theI th substruc-
ture and the coupling elementIK and is a subset of$xI

m% vector.
In a similar fashion,$xK

c% is the vector of common degree-o
freedom between theKth substructure and the coupling eleme
IK and is a subset of$xK

m% vector. Equation~23! describes the
usual displacement method of assembly for structural analy
The assembly continues to cover all other link elements prese
the system. The procedure is applicable in case these elem
also possess mass and damping effects. The final assembled
damping, and stiffness matrices of the structural system is of
order given by the sum of the master degree-of-freedom of e
substructure. These matrices are unsymmetric and are recas
the first-order form as in Eq.~2! to obtain the final eigensolution

5 Some Implementation Issues
It is apt here to elaborate some of the implementation iss

involved and adopted in the condensation technique. Espec
when applied to large-order systems, it is important to avoid
direct matrix inversions in Eqs.~13! and~14!. Moreover, the size
of the matricesbK̄ssc and @K̄ss#

T is governed by the number o
slave degree-of-freedom in the system/substructure and is l
enough to require special storage techniques. In the present
densation algorithm these sparse, banded, and unsymmetric m
ces are stored in blocks and the Crout decomposition me
~@11–12#! is used to obtain the lower and upper triangular ma
ces. This blockwise storage and decomposition is accomplis

Fig. 1 Substructures and coupling elements
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Fig. 2 Rotor bearing system and finite element model for Ex-
ample Problem 1

Fig. 3 „a… Example Problem 1. Percentage error between full
and reduced-order model whirl frequencies. Case 1. System
with isotropic bearings. „b… Example Problem 1. Percentage er-
ror between full and reduced-order model whirl frequencies.
Case 2. System with orthotropic bearings.
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Table 1 Configuration of the shaft in Example Problem 1

Node
No.

Axial
Distance

From Shaft
Left in m

Internal
Diameter

in m

Outer
Diameter

in m
Node
No.

Axial
Distance

From Shaft
Left in m

Internal
Diameter

in m

Outer
Diameter

in m

1 0.0 - 0.0051 11 0.1651 - 0.0127
2 0.0127 - 0.0102 12 0.1905 - 0.0152
3 0.0508 - 0.0076 13 0.2286 - 0.0152
4 0.0762 - 0.0203 14 0.2667 - 0.0127
5 0.0889 - 0.0203 15 0.2870 - 0.0127
6 0.1016 - 0.0330 16 0.3048 - 0.0381
7 0.1067 0.0152 0.0330 17 0.3150 - 0.0203
8 0.1143 0.0178 0.0254 18 0.3454 0.0152 0.020
9 0.1270 - 0.0254 19 0.3581 0.0152 0.0203
10 0.1346 - 0.0127
e
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using out-of-core memory. It is required to factorize the matric
bK̄ssc and @K̄ss#

T only once and the factored matrices are used
solving Eqs.~13! and ~14!. A same block factorization procedur
is uniformly adopted during the tridiagonalization involved in o
taining the eigensolution by Lanczos method~@10#!.

6 Numerical Examples
Numerical results are obtained for two examples of rot

bearing systems using the dynamic condensation procedure
scribed above. Rotor-bearing systems are characterized by
ence of gyroscopic terms that arise due to rotation and circula
terms due to either orthotropic bearings or shaft damping~@13–
15#!.

The gyroscopic terms are skew-symmetric and the circula
terms are unsymmetric. The size of the eigenvalue problem
large, as it is in general recast into first-order form of state-sp
variables~Eq. ~2!!. It is appropriate for one to resort to a dynam
condensation before a response analysis is performed on
complicated rotor-bearing systems.

The rotating shaft in the two example problems is mounted
hydrodynamic journal bearings. It is well known~@15#! that jour-
nal bearings are characterized by a 232 dynamic stiffness and
Journal of Applied Mechanics
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232 damping coefficients matrices. The bearing coefficients
in the two transverse degree-of-freedom of the rotating shaft
cording to the following equation:

FCyy Cyz

Czy Czz
G H q̇y

q̇z
J 1FKyy Kyz

Kzy Kzz
G Hqy

qz
J 5$F%. (24)

qy andqz are the transverse degree-of-freedom at the interf
node on the shaft at which the bearing is located and are inclu
in the master degrees-of-freedom vector. Thus a bearing elem
between two nodes is here represented by a 434 matrix given by

@Kb#5F @K8# 2@K8#

2@K8# @K8#
G and

@Cb#5F @C8# 2@C8#

2@C8# @C8#
G where

@K8#5FKyy Kyz

Kzy Kzz
G and @C8#5FCyy Cyz

Czy Czz
G . (25)

Here, dynamic condensation can be conveniently performed
the system without regard to these link elements such as bea
Fig. 4 Example Problem 1. Campbell diagram for rotor-bearing system
after dynamic condensation with 12 master degrees-of-freedom. iso-
tropic bearings, orthotropic bearings.
SEPTEMBER 2002, Vol. 69 Õ 613
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Fig. 5 Example Problem 2. „a… Dual rotor-bearing system. „b… Two sub-
structures. Finite element model for the inner and outer shafts of dual
rotor, disk, and bearings.
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and any other coupling elements. One can integrate these elem
with the final reduced-order model at the end of the iterative p
cess with due consideration to the element connectivity.

Example 1. The first example refers to a rotor bearing syste
~@16#! with a nonuniform flexible shaft mounted on journal bea
ings ~Fig. 2!. The details of the shaft configuration are given
Table 1. Other shaft properties are: Young’s modulus52.078e
111 N/m2, and mass density57806 kg/m3. The full model has
19 nodes and 18 beam elements with 76 degree-of-freedom.
each node is represented by two translatory and two rotati
degree-of-freedom. The shaft carries a disk of mass51.4 Kg at
node 5 and with polar moment of inertia50.00203 Kg-m2 and
diametrical moment of inertia50.00136 Kg-m2. The bearing
properties are:
ER 2002
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Case 1 Isotropic—Kyy5Kzz54.378E07 N/m,Kyz5Kzy50.0
Case 2 Orthotropic—Kyy5Kzz53.503E07 N/m, Kyz5Kzy5
28.756E06 N/m.

The convergence of the reduced-order model is studied
with respect to a different number of master degree-of-freed
The number of iterations over which the condensation matri
MR and KR are updated is kept at 10. At the end of each su
stage the eigensolution is obtained and checked for converge
The number of stages is taken to be 10 that is found to be eno
for achieving a converged solution. Figure 3 shows the percen
error in the system eigenvalues versus the number of ma
degree-of-freedom. The error is with respect to the eigenvalue
the full model. The eigenvalues stand for the natural frequenc
whirl speeds of the rotor bearing system. The rotation spee
Table 2 Critical speeds in rpm for rotor bearing system in Example Problem 1

Mode

Full Model

Reduced-Order Model With 12 Degrees-of-Freedom

Isotropic Bearings

Backward
Whirl

Forward
Whirl

Backward Whirl Forward Whirl

Value % Error Value % Error

1 15704 16883 15696 20.051 16890 0.042
2 46152 49250 46118 20.074 49288 0.077
2 68827 83580 69354 0.766 84210 0.754

Mode

Full Model Orthotropic Bearings

Backward
Whirl

Forward
Whirl

Backward Whirl Forward Whirl

Value %Error Value % Error

1 14004 16396 14008 0.029 16418 0.013
2 39429 47802 39540 0.028 47754 20.100
3 63106 80028 63424 0.504 80676 0.810
Transactions of the ASME
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peci-
fixed at 10,000 rpm during the computations. Figure 3~a! corre-
sponds to Case 1 of isotropic bearings and Fig. 3~b! to Case 2 of
orthotropic bearings. Compared to the eigenvalues of full mo
it can be observed that with the condensation technique desc
in this paper, a reduced-order model with 12 master degrees
freedom is sufficient enough to keep the percentage error of
first six predominant eigenvalues within 0.5 percent. These
degrees-of-freedom include the translational degrees-of-free
corresponding to the disk node 5, the bearing nodes 11 and
and nodes 10, 13, and 17~Fig. 2!.

Figure 4 shows the Campbell diagram for the rotor bear
system. The Campbell diagram is a graph showing variation
shaft whirl speeds with respect to the rotation speed. The diag
helps in identifying the shaft critical speeds. For example,
shown in the Fig. 4, the critical speeds for synchronous vibra
are obtained by the intersection of a unity slope line with the w
speed curves. It is obvious that these speeds of rotation c
critical state of resonance due to inherent shaft/disk imbala
that generally exist in rotor bearing systems. Figure 4 inclu
whirl speed curves corresponding to both isotropic and orthotro
bearings. The nature of the whirl—forward or backward—
marked in the figure as per the displacements at node 5.
critical speeds for the rotor bearing system are given in Tabl

Table 3 Dynamic stiffness coefficients of bearings in Example
Problem 2

Substructure
No.

Node
No.

KYY
N/m

KYZ
N/m

KZY
N/m

KZZ
N/m

1 1 2.62795e107 0.0 0.0 2.62795e107
1 9 1.7519e107 0.0 0.0 1.7519e107
1 7 8.7598e106 0.0 0.0 8.7598e106
2 1 1.7519e107 0.0 0.0 1.7519e107
2 5 8.7598e106 0.0 0.0 8.7598e106
Journal of Applied Mechanics
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As can be observed form the values listed in the table, the
centage error between the reduced-order model and the full m
is less than one percent. This is true for isotropic as well as
orthotropic bearings.

Example 2. This example refers to a dual rotor-bearing sy
tem ~@8,17#! with two shafts of different rotating speeds. The sy
tem is shown in Fig. 5~a!. The material properties for the two
shafts are: Young’s modulus52.069e111 N/m2, and mass
density58304 kg/m3. As shown in Fig. 5, the shafts are support
on journal bearings out of which one is an intershaft bearing. T
bearings are isotropic and undamped. The dynamic stiffness c
ficients for these bearing elements are given in Table 3.

The full finite element model has 15 nodes, 12 beam eleme
and 60 degrees-of-freedom with two translational and two ro
tional degrees-of-freedom per node. The speed ratio is take
1.5 with inner shaft rotating at a lower speed. The two shafts
taken as two substructures for dynamic condensation as show
Fig. 5~b!. For the inner shaft, the number of master degrees
freedom is chosen to be 10 that include translational degrees
freedom corresponding to the two disk locations at nodes 2 an
and three bearing locations at nodes 1, 7, and 9~Fig. 5~b!!. The
disk elements on the two substructures have the properties s
fied in Table 4.

Table 4 Properties of the disk elements in Example Problem 2

Substructure
No.

Node
No.

Mass
in Kg

I p
in Kg-m2

I d
in Kg-m2

1 2 4.904 0.02712 0.01356
1 8 4.203 0.02034 0.01017
2 2 3.327 0.01469 0.00734
2 4 2.277 0.00972 0.00486
Fig. 6 Example Problem 2. Campbell diagram for dual rotor-bearing sys-
tem after dynamic condensation „with undamped isotropic bearings ….
SEPTEMBER 2002, Vol. 69 Õ 615



Table 5 Critical speeds in rad Õsec. for dual rotor-bearing system in Example Problem 2

Mode

Inner Shaft,V1

Full Model Reduced-Order Model

Backward
whirl

Forward
Whirl

Backward Whirl Forward Whirl

Value % Error Value % Error

1 660 863 657 20.46 873 1.26
2 1425 1607 1428 0.21 1615 0.50
3 2125 2283 2153 1.32 2322 1.71

Mode

Outer Shaft,V251.5* V1

Backward
whirl

Forward
Whirl

Backward Whirl Forward Whirl

Value % Error Value % Error

1 687 822 684 20.44 827 0.61
2 1475 1590 1463 20.81 1588 20.13
3 2190 2290 2200 0.46 2309 0.83
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The master degrees-of-freedom for the outer shaft is chose
be 8 that includes translational degrees-of-freedom correspon
to the two disk locations at nodes 2 and 4 and two bearing lo
tions at nodes 1 and 5~Fig. 5~b!!. Thus each node is represente
by two translatory and two rotational degrees-of-freedom as
Example 1. Reduced-order models are obtained for the two sh
independently. With the chosen master degrees-of-freedom fo
two substructures, the convergence of the individual reduc
order models is found to be satisfactory as in the case of Exam
Problem 1.

The final reduced-order model for the complete system is s
thesized from the individual reduced-order models of the two s
structures according to their connectivity at the interfaces. T
element matrices of the link elements such as the bearings in
present example problem are integrated with the final reduc
order model as described in Section 4. Figure 6 shows the Ca
bell diagram obtained with the use of the final reduced-or
model. The two shafts have different critical speeds as can
observed from the figure. The critical speeds as picked up f
the Campbell diagram are listed in Table 5 and compare well w
those obtained from the uncondensed model. The percentage
in the results is less than 1.7 percent, with number of stages in
iterative process being 10. The results are also in excellent ag
ment with those reported in Glasgow and Nelson@8# and Rao
@17#.

7 Conclusions
A new dynamic condensation procedure is presented in

paper to handle unsymmetric structural systems and to ob
reduced-order models. The efficiency of the procedure is sh
with respect to the accuracy of the eigensolution. The two
ample problems considered in the paper have amply demonst
the capability of the procedure in achieving the eigensolut
within a percentage error of less than two percent.

The condensation technique is developed within the framew
of finite element formulation and is iterative. The method impl
itly uses the left as well as the right eigenvectors of the unsy
metric system in the iteration process and hence is terme
two-sided as compared to the techniques available in literature
symmetric systems. The method is developed is such a wa
avoid the computation of the eigenvectors at each iteration of
iterative procedure.

As is the case with any condensation scheme, it is often
memory storage requirement that dominates the other req
ments, especially when the total degrees-of-freedom in the st
tural system is too large for modern digital computer to han
economically. In this respect, the proposed dynamic condensa
technique finds wider application in handling large-order unsy
metric systems via substructure synthesis.
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Implementation issues such as the necessity to adopt block
storage and decomposition of the sparse, banded, and unsym
ric matrices using out-of-core memory are also highlighte`d in the
paper. Further, while the effect of the number of master degre
of-freedom on the convergence rate of the condensation proce
is illustrated, no special techniques are suggested in the sele
of the particular master degrees-of-freedom. The issue needs
ther study that is beyond the scope of the present paper.
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Extracting Physical Parameters
of Mechanical Models From
Identified State-Space
Representations
In this study a new solution for the identification of physical parameters of mecha
systems from identified state space formulations is presented. With the proposed app
the restriction of having a full set of sensors or a full set of actuators for a comp
identification is relaxed, and it is shown that a solution can be achieved by utilizing m
types of information. The methodology is validated through numerical examples,
conceptual comparisons of the proposed methodology with previously presente
proaches are also discussed.@DOI: 10.1115/1.1483836#
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1 Introduction
System identification, in the most general sense, can be

scribed as the identification of the conditions and properties
mathematical models that aspire to represent real phenome
an adequate fashion. The choice of such models is very m
dependent on the type of application one considers. In finite
ment formulations, identification of physical parameters gener
refers to the identification of the mass, damping, and stiffn
parameters in the second order matrix differential equations
possible approach is to identify these parameters directly f
experimental dynamic data~see, for example, the works of Agba
bian et al.@1# and Smyth et al.@2#!. However, the most widely
employed approach consists in identifying the modal parame
of the system, and to use them to update a pre-existing fi
element model. Some of the noteworthy efforts and discussion
this direction are those of Ewins@3#, Mottershead and Friswel
@4#, Berman@5#, Baruch@6,7#, and Beck and Katafygiotis@8#.

The identification of the parameters in a first-order differen
equation formulation has also received considerable attention
evidenced by the works of Ibrahim and Mikulcik@9#, Ibrahim
@10#, Vold et al. @11#, Juang and Pappa@12#, Juang et al.@13,14#,
and Luşet al. @15,16#. However, if one starts with a state-spa
model, and tries to identify the parameters of the second o
model, issues such as nonuniqueness of the solution have
considered, making such an ‘‘inverse’’ problem quite complex

Usually, the modal parameters required for updating struct
models are the undamped~normal! modal parameters, wherea
when one works with the first-order formulation, the identifi
modal parameters are complex, and correspond, in some sen
the damped modal parameters of the second-order formula
Therefore, the retrieval of the undamped modal parameters f

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dece
ber 2, 2001; final revision, February 28, 2002. Associate Editor: R. C. Ben
Discussion on the paper should be addressed to the Editor, Professor Robe
McMeeking, Department of Mechanical and Environmental Engineering Univer
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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the identified complex modes also constitutes an important p
lem, and the study by Sestieri and Ibrahim@17# presents a well-
documented discussion. One assumption often employed is
the vibrational modes of the second-order model are uncou
~modal damping!. In this case, arguably the most often employ
method to retrieve the undamped modal parameters is the
called standard technique~e.g., see Imregun and Ewins@18#, Ibra-
him @19#, and Alvin @20#!. It is well known, however, that this
approximation loses its validity when the system under consid
ation is highly coupled. To overcome this limitation, many autho
have focused their attention on how to retrieve the undam
modal parameters from complex modal parameters for the cas
general damping. Some of the most noteworthy discussions
clude the works of Ibrahim@19#, Alvin and Park@21#, Zhang and
Lallement@22#, Yang and Yeh@23#, Alvin et al. @24#, Tseng et al.
@25,26#, Chen et al.@27#, and Balme`s @28#.

Taking the inverse problem one step further, one might be
terested in directly obtaining the parameters of the second-o
model. When one tries to retrieve the second order parame
from the identified state-space model, various methodologies
pose different restrictions on the number of sensors and actua
employed, assuming that all the modes of the structure have b
successfully identified. The most restrictive requirement is tha
having as many sensors and actuators as the number of iden
modes, which was discussed by Yang and Yeh@23#. Later on
~Alvin and Park @21#! this requirement was improved upon b
requiring that only the number of sensors should be equal to
number of identified modes, with one co-located sensor–actu
pair. A further generalization was presented by Tseng et
@25,26# for the case when the number of actuators is equal to
number of second-order modes, providing the most general s
tion available for a full set of actuators or sensors, with one
located sensor–actuator pair.

In this study, we further improve on the requirement concern
the number of sensors and actuators. Based on some con
previously discussed by Sestieri and Ibrahim@17#, and Balme`s
@28#, it is shown that the physical parameters of the second o
model can be obtained by using the solution of a symmetric co
plex eigenvalue problem. The minimum requirement for the p
posed methodology is that all the degrees-of-freedom should

-
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tain either a sensoror an actuator, with at least one co-locate
sensor–actuator pair. It should be noted that this solution imp
itly contains the solutions for the cases with full set of sens
and/or full set of actuators, and therefore, the approach discu
in this study provides a more general solution for the inve
problem.

2 Symmetric Formulation of a First-Order Dynamic
Model

One of the most well-known linear time invariant models f
dynamical systems is undoubtedly the matrix form of Newto
second law of motion written for discretized spatial domains, i

Mq̈~ t !1Lq̇~ t !1Kq~ t !5Bu~ t !

y~ t !5FCpq~ t !
Cvq̇~ t !
Caq̈~ t !

G (1)

where q(t) indicates the vector of the~generalized! nodal dis-
placements, with (̇) and (̈ ) representing, respectively, the fir
and second-order derivatives with respect to time. The ve
u(t), of dimensionr 31, is the input vector containingr external
excitations acting on the system whiley(t) represents the mea
surement vector, which may contain any combination of no
displacements, velocities, and/or accelerations. For anN-degree-
of-freedom system,MPRN3N, LPRN3N, andKPRN3N are
the symmetric positive definite mass, damping, and stiffness
trices, respectively, whileBPRN3r is the input matrix. The ma-
trix @Cp

TCv
TCa

T#TPRm3N represents the output matrix that ma
incorporate position, velocity, and acceleration measureme
with m denoting the total number of outputs.

By defining a state vectorz(t)5@q(t)Tq̇(t)T#T, the equations of
motion in ~1! can be conveniently written as

F L M
M 0 G ż~ t !1FK 0

0 2MGz~ t !5FB0 Gu~ t ! (2a)

y~ t !5@Cp 0#z~ t ! (2b)

where, for ease of exposition, we have considered only posi
measurements in the output equation of Eqs.~2!. However, the
following results are true for any type of measurements~positions,
velocities, or accelerations!, and the generalization to velocity an
acceleration measurements will be discussed in detail in a su
quent section. The advantage of rewriting Eqs.~1! into Eqs.~2! is
that now the associated eigenvalue problem is kept symmetric
can be written in a matrix form as

F L M
M 0 G F c

cLGL5F2K 0

0 MG F c
cLG (3)

where cN32N5@c1c2 . . . c2N# is the matrix containing the
eigenvectors of the complex eigenvalue problem

~l i
2M1l iL1K!c i50

and L2N32N is the diagonal matrix of the complex eigenvalu
l i5s i6 j v i ~with j 5A21!. When all the modes of the structur
are underdamped, all the eigenvalues appear in complex conju
pairs, i.e., they can be ordered such thatl2i 215l2i* with i
51,2, . . . ,N, where the superscript~* ! denotes complex conju
gate. This implies that the complex eigenvectors have the sim
property thatc2i 215c2i* for i 51,2, . . . ,N. In general, these
eigenvectors can be arbitrarily scaled; however, if the scalin
chosen such that~see Sestieri and Ibrahim@17# and Balme`s @28#!

cTMcL1LcTMc1cTLc5I

LcTMcL2cTKc5L

or in matrix form
618 Õ Vol. 69, SEPTEMBER 2002
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F c
cLGTF L M

M 0 G F c
cLG5I (4a)

F c
cLGTFK 0

0 2MG F c
cLG52L (4b)

then, for aproportionally damped system, the real and imaginary
parts of the components of these complex eigenvectors are e
in magnitude.

Once the symmetric eigenvalue problem~Eqs. ~4!! has been
solved, we can now conveniently rewrite Eqs.~2! by using the
transformationz(t)5@cT(cL)T#Tz(t) so that

ż~ t !5Lz~ t !1cTBu~ t ! (5a)

y~ t !5Cpcz~ t !. (5b)

For ease of exposition, let us indicate withM (k,:) andM (:,l )
the kth row and thei th column, respectively, of a generic matr
M . The equations of motion rewritten in form~5! have the impor-
tant property that, for a generici th degree-of-freedom that con
tains a co-located sensor–actuator pair,

Cp~ i ,:!c5@cTB~ :,i !#T, (6)

and this property will be of great use~1! for determining and
scaling the eigenvectors, and~2! for developing the concept o
input-output equivalence, as presented in detail in Section 4.

3 Identification of the Physical Parameters
of the System

The proposed identification algorithm consists of two we
defined phases:~1! the determination of a first-order model of th
system, and~2! the transformation of such an identified mod
into a second-order model.

From general input-output data, it is possible to identify a st
space realization in some arbitrary basis, and such a realiza
can be expressed as

ẋ~ t !5ACx~ t !1BCu~ t !

y~ t !5CCx~ t !1DCu~ t ! (7)

where now ACPR2N32N, BCPR2N3r , CCPRm32N, and DC

PRm3r are continuous time system matrices. In this study,
ERA/OKID based approach, as discussed by Juang et al.@13,14#
and Luşet al. @15,16#, was used for the identification of the dis
crete time system matrices~namely the matricesF, G, C, andD!,
and these discrete time matrices were converted to their con
ous time counterparts using the zero-order hold assumption
considering the transformationx5wu, the continuous time system
of Eqs.~7! can also be written in modal coordinates as

u̇~ t !5Lu~ t !1w21BCu~ t ! (8a)

y~ t !5CCwu (8b)

where the matrixL contains the continuous time eigenvalues
the identified state space model, andw, of order 2N32N, is the
matrix of the corresponding eigenvectors. The matrixDC has been
omitted in Eq.~8b! because it is independent of coordinate tran
formations. It is noteworthy that in the system of Eqs.~8!, the
productsw21BC andCCw appear; these products impose a stro
limitation on the order of the second-order model to be identifi
whose dimensions are now constrained either by the numbe
actuators, or by the number of sensors~Tseng et al.@25,26#!.

If the first-order system of Eqs.~7! was identified using data
that actually came from the second-order model of Eq.~1!, the
models represented by Eqs.~5! and~8! are different models of the
same system. Therefore, we look for a transformation matrix,T,
that relates these two representations, i.e.:

T 21LT5L (9a)

T 21w21BC5cTB (9b)

CCwT5Cpc. (9c)
Transactions of the ASME
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If there are no repeated roots, it is easy to show that the tran
mation matrix is diagonal, i.e.,T5diag(t1,t2, . . . ,t2N) and its val-
ues are complex conjugate. By examining Eqs.~9!, it is clear that
the matrixT has a twofold effect:~1! to transform the eigenvec
tors from those of a nonsymmetric eigenvalue problem to thos
a symmetric eigenvalue problem, and~2! to properly scale such
eigenvectors. Here we discuss the identification of this trans
mation matrixT and the eigenvectorsc when there are no re
peated roots, and the input and output matrices~B andCp , re-
spectively! of the finite element model are known. These inp
and output matrices are assumed to contain binary informat
i.e., in the case of the input matrixB, the coefficient in thei th row
( i 51,2, . . . ,N) and j th column (j 51,2, . . . ,r ) of B is 1 if the
j th actuator is placed on thei th degree-of-freedom and this coe
ficient is 0 if the j th actuator is not placed on thei th degree-of-
freedom. Similarly, the coefficient in thei th row (i
51,2, . . . ,m) and j th column (j 51,2, . . . ,N) of the output ma-
trix Cp is 1 if the i th sensor is placed on thej th degree-of-freedom
and this coefficient is 0 if thei th sensor is not placed on thej th
degree-of-freedom.

To present the proposed methodology in a concise manne
us assume that the input and output matrices of both repres
tions~in Eqs.~9b! and~9c!! have been expanded to incorporate
the degrees-of-freedom. This is most easily achieved by inco
rating columns of zeros in the input matrices~BC andB! and rows
of zeros in the output matrices~CC andCp! for the degrees-of-
freedom that are either not excited or not measured. Furtherm
assume that these input and output matrices have been arrang
that the i th column of the input matrix corresponds to thei th
degree-of-freedom~and hence there will be a column of zeros
there is no actuator placed on thei th degree-of-freedom!, and
similarly, the i th row of the output matrix corresponds to thei th
degree-of-freedom~a row of zeros if there is no sensor on thei th
degree-of-freedom!. Now the previous transformation Eqs.~9! can
be written in an ‘‘expanded’’ form as

T 21LT5L (10a)

T 21w21BC
E5cTBE (10b)

CC
EwT5Cp

Ec (10c)

where BC
E , BE, CC

E , andCp
E are the expanded versions of th

matricesBC , B, CC , andCp , respectively.
The identification of the transformation matrixT and the prop-

erly scaled complex eigenvectorsc can be investigated by study
ing a general limit case, since it can be shown that the case of
set of sensors and the case of full set of actuators are special
of the general approach. Let us assume that each degre
freedom containseither an actuatoror a sensor, with one degree
of-freedom containing a co-located sensor–actuator pair~hence
r 1m5N11!. With the notation introduced in Section 2, if th
co-located sensor–actuator pair is at thei th degree-of-freedom the
well-known co-location requirement can be written as

Cp
E~ i ,:!c5~cTBE~ :,i !!T. (11)

Using the co-location requirement, the transformation matrixT
can be evaluated from Eqs.~10b!, ~10c!, and Eq.~11! as

CC
E~ i ,:!wT5~T 21w21BC

E~ :,i !!T;

CC
E~ i ,:!wT 25~w21BC

E~ :,i !!T. (12)

Since the matrixT is diagonal, eacht i ( i 51,2, . . . ,2N) can be
uniquely determined from Eq.~12!. Once these scaling factors a
obtained, what is left to be determined is the complex eigenve
matrix c.

The information pertaining to a certain degree of freedom
embedded either in the input matrix or in the output matrix. Go
back to Eqs.~10!, the output matrices in Eq.~10c! essentially
contain information about onlym degree-of-freedom~with m
Journal of Applied Mechanics
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,N!. If there is a sensor at thekth degree-of-freedom then thekth
row of the matrixc can be evaluated using Eq.~10c!, i.e.,

c~k,:!5CC
E~k,:!wT. (13)

On the other hand, if there is no sensor at thekth degree-of-
freedom then Cp

E(k,:)c50132N . However, if a degree-of-
freedom is instrumented with either a sensor or an actuator,
kth row of the matrixc can be evaluated using Eq.~10b! as

c~k,:!5~T 21w21BC
E~ :,k!!T. (14)

Clearly, this argument is valid for all theN degrees-of-freedom
and so all the rows of the matrixc can be evaluated. It should b
noted that, for thei th degree-of-freedom that contained the c
located sensor–actuator pair, one can use either Eq.~13! or Eq.
~14!, since they lead to the same result by the co-location requ
ment in Eq.~11!.

If there is a full set of sensors~rank(Cp)5N, Cp
E[Cp , and

CC
E[CC!, or a full set of actuators~rank(B)5N, BE[B, and

BC
E[BC!, the scaling factors are still evaluated from Eq.~11!.

Once the scaling factors are evaluated, one can identify the c
plex eigenvector matrixc using

Cp
21CCwT5c (15)

when there is a full set of sensors, or

T 21w21BCB215cT (16)

when there is a full set of actuators. Clearly, these two cases
be regarded as special cases of the general formulation pres
in this section.

Once the properly scaled eigenvector matrixc is evaluated, the
mass, damping, and stiffness matrices of the finite element m
can be obtained using the orthogonality conditions in Eqs.~4!. As
discussed in Balme`s @28#, algebraic manipulations on Eqs.~4!
leads to the following identities:

F L M
M 0 G21

5F 0 M21

M21 2M21LM21G
5F c

cLGF c
cLGT

5F ccT cLcT

cLcT cL2cTG (17a)

FK 0

0 2MG21

5FK21 0

0 2M21G
52F c

cLGL21F c
cLGT

52FcL21cT ccT

ccT cLcTG . (17b)

In order for Eqs.~17! to be valid, it is necessary that

M5~cLcT!21, L52McL2cTM, (18a)

K52~cL21cT!21, ccT50 (18b)

and Eqs.~18! provide the required expressions for the ma
damping and stiffness matrices of the second-order model of
system.

3.1 Observations. There is a sign choice for the squa
roots when one solves for the scaling factors inT ~see Eqs.~12!!;
however, this does not have any effect on the identified m
damping, and stiffness matrices. To investigate this point, first
us note that a sign change in the scaling factort i causes a sign
SEPTEMBER 2002, Vol. 69 Õ 619
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change in thei th complex modeci . This sign change inci has
no effect on the mass matrix, since the expression for the m
matrix can be written as

M5~clcT!215~l1c1c1
T1l2c2c2

T1 . . . 1l2Nc2Nc2N
T !21

5~l1~2c1!~2c1
T!1l2~2c2!~2c2

T!1 . . .

1l2N~2c2N!~2c2N
T !!21 (19)

and this expression is clearly invariant under a sign change
any of the complex eigenvectors. Analogous arguments can
used to show that the damping matrixL and the stiffness matrix
K are also invariant under a sign change for theci ( i
51,2, . . . ,2N).

On the other hand, a change in the ordering of the rows of
complex eigenvector matrixc changes the final form of the mas
damping, and stiffness matrices in the sense that two diffe
ordering schemes lead to two different sets that differ only by
arrangement of rows and columns. In fact, if we consider
expression in Eq.~19! for the mass matrix, an interchange b
tween thekth and l th rows of c clearly leads to an interchang
between thekth and l th rows and columns of the mass matri
However, this rearrangement also takes place in the damping
the stiffness matrices. In conclusion, this nonuniqueness is equ
lent to the reordering of the degrees-of-freedom in the repre
tation of Eq.~1!.

In the foregoing discussion, it was assumed that there was
one co-located sensor–actuator pair, but in general, it is pos
to have more co-located sensors and actuators. These extra
ditions are redundant if the system is noise free, i.e., the sca
factors obtained by investigating one co-located sensor–actu
pair also satisfies the co-location requirement of any other
located sensor–actuator pair. However, in the presence of noi
might be best to proceed with a least-squares approach to o
the entries of the matrixT ~for a thorough investigation on th
effects of noise on the proposed approach, the reader is referr
the work of Luş@29#!.

If instead of displacement measurements one uses velocit
acceleration measurements, the output equation in Eqs.~5! can be
rewritten as

• for velocity measurements:

y~ t !5@0 Cv#F c
cLGz~ t !5CvcLz~ t ! (20)

• for acceleration measurements:

y~ t !5@0 Ca#F c
cLGz~ t !5CacL2z~ t !1CacLcTBu~ t !.

(21)

Clearly, these changes lead to some alterations in Eq.~9c!, accord-
ing to the type of measurements used:

CCwT5CvcL for velocity measurements

CCwT5CacL2 for acceleration measurements.

Analogous to the output matrixCp , the output matricesCv and
Ca also contain binary information~as discussed in Section 3!.
Therefore, all we have to do to use the algorithms and discuss
of Section 3 is to useCCwL21 in Eq. ~9c! for velocity measure-
ments orCCwL22 in the case of acceleration measurements. I
noteworthy that, in the case of acceleration measurements,
the first term enters in the identification process while the sec
term, independent of the transformation matrix, needs to be
counted only for simulation purposes.

In general, one can possibly use all types of measurem
simultaneously, and in that case each row of the matrixCCw must
be handled separately with regards to the changes discu
above. Once appropriate alterations are made according to
type of sensor one uses, the formulations and discussions
sented in Section 3 remain unchanged.
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4 Concept of Input-Output Equivalence
The formulation presented in this study has one main advan

over previous studies, in the sense that the methodology prese
here has more general theoretical implications about the num
of sensors or actuators that can be used in dynamic testing
order to clarify this point, let us consider anN degree-of-freedom
system. By taking the Laplace transform of Eqs.~5! and by com-
bining the two transformed equations, it is possible to obtain
expression that relates the input transform vector,U(s), and the
output transform vector,Y(s), as

Y~s!5Cpc@sI2L#21cTBU~s!5CpH~s!BU~s! (22)

where the matrixH(s), of dimensionN3N, represents the trans
fer function matrix of the system. The complete knowledge
H(s) would allow one to determine the response of the system
any point for an arbitrary input applied at any degree-of-freed
creating a complete predictive model of the system. Hence,
goal of any identification methodology should be the determi
tion of the matrixH(s). For this purpose, the well-known prop
erty thatH(s) is a symmetric matrix will be of great help. Again
for ease of presentation, we consider only displacement meas
ments but analogous formulations can be derived for velocity
acceleration measurements, as shown before.

Let us first consider the case where, in the identification p
cess, we haveN outputs andN inputs available~m5N and r
5N!. This will correspond to the case ofN co-located pairs of
sensors and actuators. In the notation of Section 3, this case
responds to havingCp[Cp

E andB[BE and the matrixH(s) is
directly determined.

If the system has been identified usingN outputs and 1 input
~m5N and r 51! with the i th output co-located with the input
only the i th column of the transfer function matrixH(s) can be
directly identified. This will be equivalent to knowing the matri
c, since in Eqs.~22! the matrixCp is the identity matrix, and,
consequently, the entire transfer function matrix can be obtain
In this case~N outputs and 1 input!, it is well known that the
physical parameters of the second-order system of Eqs.~1! can be
retrieved from the identified state-space model, as discussed
viously by many authors~see, e.g., the works of Alvin and Par
@21# or Tseng et al.@25,26#!.

On the other hand, if the identified system hasN inputs and 1
output~m51 andr 5N! with the i th input co-located with thei th
output, only thei th row of the transfer function matrixH(s) can
bedirectly identified. In this case, the matrixB in Eqs.~22! is the
identity matrix, and analogous to the previous case, it is poss
to completely determine the matrixH(s). A solution for this case
was presented by Tseng et al.@25,26#.

In system identification literature, these two previous cases
considered as the two limit cases. In fact, there is no methodo
available that allows us to combine information coming fromm
outputs andr inputs, and the possibility of combining these tw
types of information is one of the innovations of the propos
approach. To present this generalization, let us identify anN
degree-of-freedom system withm outputs andr inputs ~with m
,N and r ,N and m1r 5N11!, with one co-located sensor–
actuator pair on thei th degree-of-freedom. At this point it is use
ful to remind the importance of having at least one pair of c
located sensor and actuator for the determination of
transformation matrixT, which leads to the presence of11 in the
m1r 5N11 condition. What is noteworthy in this case is the fa
that neitherCp norB are square~identity! matrices and this im-
plies that neither a column nor a row ofH(s) is fully identified.

Due to the co-located sensor–actuator pair at thei th degree-of-
freedom the entry at thei th row andi th column ofH(s) (Hii (s))
is identified. Now, if we consider an input on thel th degree-of-
freedom and an output on thekth degree-of-freedom, we are ca
pable of determiningHkl(s), which represents the component
H(s) on thekth row andl th column. The main innovation in this
study is that the formulations developed herein allow us to use
Transactions of the ASME
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property thatH(s) is symmetric, and hence even though we ha
not identified the componentHlk(s), we can useHkl(s) instead.
Therefore, if all the degrees-of-freedom have either an actuato
a sensor, the entirei th row and/ori th column of H(s) can be
determined directly. This implies that it is possible to transfo
the general case ofm sensors andr actuators to an equivalent cas
of a full set of sensors or of a full set of actuators. This has b
possible because of the concept of ‘‘input–output equivalenc
so that for this methodology, it is indifferent to have either
input or an output at each degree-of-freedom.

This concept of input–output equivalence is possible beca
of the particular eigenvector basis discussed, i.e., the eigenve
for the symmetric eigenvalue problem of the system in Eqs.~2!.
On the other hand, if we were to use the eigenvectors of
nonsymmetric problem, the transpose of the eigenvector matr
Eqs. ~9a! would be replaced with the inverse of the matrixw
~dimension 2N32N!, and hence, we would be limited to the ca
of either a full set of sensors~Alvin and Park@21# or Tseng et al.
@25,26#! or a full set of actuators~Tseng et al.@25,26#!.

5 Numerical Examples
To show the validity of the proposed approach, first a sim

but general numerical example is presented. The system, show
Fig. 1, has been previously studied by Agbabian et al.@1# and Koh
and See@30#; the values for the mass and stiffness matrices u
in this study are given in Table 1.

To consider the effects of the modal coupling on the structure
the eigenvectors, we consider two different damping matrices
shown in Table 2. The first one leads to the more classical cas
modal damping. The second matrix instead induces coupling

Fig. 1 Three-degree-of-freedom system considered for the ap-
plication of the proposed approach

Table 1 Mass and stiffness matrices used for the system of
Fig. 1

Table 2 Damping matrices leading to uncoupled and coupled
second-order vibrational modes for the system of Fig. 1
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the second-order vibrational modes, and therefore, more con
tional methods that employ the modal damping assumption
not applicable. Furthermore, we assume that the system is ex
by only two actuators, located at the first and the second degr
of-freedom and that accelerations are also measured only at
degrees-of-freedom~second and third degrees-of-freedom!. With
this particular setup, methodologies that require either a full se
sensors, or a full set of actuators, are also not applicable.

The state-space model is identified using the simulated p
response data of the system~with a sampling time ofDT
50.05 sec.!, and by employing the ERA/DC algorithm~Juang
et al. @13#!. Using the identified state-space models for both
coupled and the uncoupled cases, the scaling factors inT, the
eigenvectorsc, and the mass, damping, and stiffness matrices
the second-order model~M, L, andK, respectively! are re-
trieved using the methodology presented in this work.

5.1 Uncoupled Second-Order Modes. For this case, the
identified system matrices for the discrete time state space m
are presented in Table 3. Once these matrices have been obta
they are converted to their continuous time counterparts, and
equations are written in the modal coordinates, as in Eqs.~8!. At
this point, it is possible to calculate the diagonal transformat
matrix T using the information at the co-located sensor–actua
pair, leading to: diag(T )5(2.9667 j 2.322, 8.9967 j 8.164,
6.4497 j 4.789), where diag(T ) refers to the components on the
main diagonal of the transformation matrixT ~with all off-
diagonal terms equal to zero!. As expected, they appear in com
plex conjugate pairs.

Once these scaling factors have been evaluated, the eigenv
matrix c can be identified, as discussed in Section 3. The eig
vector matrix has the formc5@c1c1* c2c2* c3c3* # and for this
case the identified complex eigenvectorsc1 , c2 , andc3 are

c15F20.1592 j 0.159
20.2762 j 0.276
20.1852 j 0.185

G ; c25F 0.1091 j 0.109
20.1352 j 0.135
0.2741 j 0.274

G ;

c35F 0.3341 j 0.334
20.0312 j 0.031
20.1142 j 0.114

G .

As discussed in Section 2, for a proportionally damped syst
the particular scaling choice employed in the proposed metho
ogy leads to complex eigenvectors whose components have
and imaginary parts of equal magnitude. Once these eigenve

Table 3 Identified discrete time matrices of the state-space
model for the uncoupled damping case
SEPTEMBER 2002, Vol. 69 Õ 621
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have been obtained, the mass, stiffness, and damping matrice
be evaluated using the expressions presented in Eq.~18!

M5F 0.8 0 0

0 2.0 0

0 0 1.2
G ; K5F 4.0 21.0 21.0

21.0 4.0 21.0

21.0 21.0 4.0
G ;

Table 4 Identified discrete time matrices of the state-space
model for the coupled damping case

Table 5 Mean values of the identified samples for the mass,
damping, and stiffness coefficients. The estimates for the coef-
ficients are obtained at 5% RMS noise level.

Table 6 Absolute values of the percentage errors in the mean
values of the identified samples for the mass, damping, and
stiffness coefficients. The estimates for the coefficients are ob-
tained at 5% RMS noise level. The ‘‘-’’ entries in the tables cor-
respond to coefficients for which the true values are 0.

Table 7 Coefficients of variation „%… of the identified samples
for the mass, damping, and stiffness coefficients. The esti-
mates for the coefficients are identified at 5% RMS noise level,
and the ‘‘-’’ entries in the tables correspond to coefficients for
which the true values are 0.
622 Õ Vol. 69, SEPTEMBER 2002
s can

L5F 0.4 20.1 20.1

20.1 0.4 20.1

20.1 20.1 0.4
G

which are exactly the system matrices we used to obtain the
namic data. These matrices automatically come out as real,
the imaginary components are of the order of 10215 and therefore
are numerical zeros for all purposes.

5.2 Coupled Second-Order Modes. The procedure for
coupled systems are exactly the same as for uncoupled syst
only now the matrices we obtain at each step will look differe
than the ones obtained in the uncoupled case. In this case
identified discrete time system matrices are presented in Tab
while the diagonal entries of the matrixT are diag(T )5(0.256
6 j 4.218, 0.4797 j 16.492, 9.9807 j 0.754). The complex eigen

Fig. 2 Truss structure with eight unrestrained degrees-of-
freedom „one horizontal and one vertical for each of the nodes
denoted by 1, 2, 3, and 4 …

Table 8 Mass, damping, and stiffness matrices for the truss
system of Fig. 2. Only the unrestrained degrees-of-freedom are
included in these matrices, and the order of the degrees-of-
freedom are chosen as u 1 , v 1 , u 2 v 2 , u 3 , v 3 , u 4 , v 4 .
Transactions of the ASME
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Table 9 Properly scaled complex mode shapes „amplified by a factor of 100
for presentation … for the truss system of Fig. 2 identified with five sensors and
four actuators via the proposed approach. Note that all the eigenvectors
appear in complex conjugate pairs.
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vector matrixc still has the same structure as in the previous c
but now the identified complex eigenvectorsc1 , c2 , andc3 are

c15F 0.1661 j 0.154
0.2661 j 0.284
0.2071 j 0.171

G ; c25F 0.1271 j 0.088
20.1612 j 0.120
0.2511 j 0.296

G ;

c35F20.3272 j 0.345
0.0181 j 0.045
0.1391 j 0.0093

G .

It is important to see that, since the system is not proportion
damped, the relation between the real and imaginary parts~that
they are equal in magnitude in a proportionally damped system! is
not valid anymore. However, this makes no difference on the
of the procedure, and the identified physical parameters are

M5F 0.8 0 0

0 2.0 0

0 0 1.2
G ; K5F 4.0 21.0 21.0

21.0 4.0 21.0

21.0 21.0 4.0
G ;

L5F 0.5 20.1 20.2

20.1 0.7 20.3

20.2 20.3 0.6
G

which are identical to the initial second-order matrices.

5.3 Effects of Noise on Identified Parameters. In order to
discuss, in a statistically meaningful framework, the effects
noise perturbations on the proposed approach, we perform M
Carlo type simulations on the 3-degree-of-freedom system w
nonproportional damping. Here we assume that a long dura
pulse response data in the form of acceleration measuremen
hanics
se

lly

est

of
nte
ith

tion
ts is

available at the second and the third masses, and that the resp
of the structure is due to unit pulses applied at degrees-of-free
1 and 2 only. The output data is then polluted with Gaussi
zero-mean, white noise sequences, whose root-mean-squ
~RMS! values are adjusted to be 5% of the unpolluted time his
ries. We consider 200 different noise patterns, and each of
polluted time histories are used to identify a discrete time sta
space model with ERA.

Tables 5, 6, and 7 concisely summarize the results of this st
It can be seen in Table 5 that the mean values of the identi
samples are very close to the exact values; indeed Table 6 re
that the maximum relative error~in the absolute value sense! in
the identified mean values is about 1%. In addition, the coe
cients of variation presented in Table 7 show that the scat
around the mean values for the mass and stiffness estimate
quite acceptable, especially for the degree-of-freedom with
co-located sensor–actuator pair~degree-of-freedom 2!. The coef-
ficients for the damping matrix, however, are generally larger th
those of the mass and stiffness matrices. This could partially
attributed to the high sensitivity of the damping to the phase
lations between the mode shape components which generi
makes the identification of the damping matrix a harder task t
the identification of the mass and stiffness matrices. Overall
results show that the proposed methodology provides extrem
satisfactory results even in the presence of noise perturbation

5.4 Identification of a Truss Structure. In order to present
the applicability of the proposed methodology to a more comp
case, we now consider a two-dimensional truss structure with
ited number of sensors and actuators. This system, shown in
2, has a total number of eight nodes of which four are fully
strained, and hence the total number of active degrees-of-free
SEPTEMBER 2002, Vol. 69 Õ 623
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is 8 ~one horizontal and one vertical per each node!. The horizon-
tal degrees-of-freedom are denoted byui and the vertical degrees
of-freedom are denoted byv i , with the subscript referring to the
node number~i.e., i 51,2,3,4!. The mass, damping, and stiffnes
matrices for this system are presented in Table 8. Note that t
second-order matrices contain the coefficients for only the u
strained degrees-of-freedom and that these degrees-of-freedo
ordered such that the displacement vector can be written asq(t)
5@u1(t)v1(t) . . . u4(t)v4(t)#T.

The instrument scheme we consider is such that there are
output sensors and four actuators:u1 , v1 , v2 , v3 , and v4 are
instrumented with output sensors, the forcesf 2

u(t) and f 3
u(t), are

applied horizontally at degrees-of-freedom 2 and 3, whereas
other two, denoted byf 1

v(t) and f 4
v(t) are applied vertically at

degrees-of-freedom 1 and 4, such that the force vector ma
defined asu(t)5@ f 1

v(t) f 2
u(t) f 3

u(t) f 4
v(t)#T. In this case the initial

discrete time state-space model is identified from unpolluted g
eral input/output data using the OKID/ERA approach.

The co-location requirement for this case can be written
Cp

E(2,:)c5(cTBE(:,2))T, or equivalently

CC
E~2,:!w5~w21BC

E~ :,2!!TT 2. (23)

Once the transformation matrix is evaluated from Eq.~23!, the
rows of the eigenvector matrixc can be identified either from

c~ i ,:!5CC
E~ i ,:!wT 21 for i 51,2,4,6,7 (24)

for the rows corresponding to the degrees-of-freedom with ou
sensors, or from

c~ i ,:!5~Tw21BC
E~ :,i !!T for i 52,3,5,8 (25)

Table 10 Mass, damping, and stiffness matrices for the truss
system of Fig. 2 identified with five sensors and four actuators
via the proposed approach
624 Õ Vol. 69, SEPTEMBER 2002
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for the rows corresponding to the degrees-of-freedom with ac
tors ~note that the row corresponding tov1 can be identified from
either ~24! or ~25! due to the co-location!. Since all degrees-of-
freedom of this structure are instrumented with either a senso
an actuator, all the rows of the matrixc can be identified, and
these eigenvectors are presented in Table 9. Analogous to the
of the 3-degrees-of-freedom system with proportional dampi
also in this case the real and imaginary parts of the eigenvec
are equal to each other in magnitude since the damping matri
the truss structure was constructed so as to lead to a clas
damping case.

Using the identified complex eigenvector matrixc, the mass,
damping, and stiffness matrices can once again be constructe
Eqs. ~18!, and these are presented in Table 10. All the identifi
quantities are exactly equal to those reported in Table 8 and so
proposed methodology has once again provided an exact solu

6 Conclusions
In this study, a new methodology for the identification

second-order structural parameters from identified state-space
resentations was presented. It was shown that, with the form
tion developed herein, it is possible to formulate the inverse pr
lem as a problem of transforming the identified compl
eigenvectors to a certain basis. The requirements for a succe
transformation are that there should be a co-located sen
actuator pair, and that all the degrees-of-freedom should con
either a sensoror an actuator. The numerical results included
this study emphasize the efficiency and generality of the propo
approach.

The main innovation in this study is that, with the propos
methodology, it is possible to utilize mixed types of informatio
thereby enabling one to treat the information from a sensor o
actuator in an analogous fashion. This conceptual ‘‘input–out
equivalence’’ helps relaxing the necessity of having either a
set of sensors or a full set of actuators, allowing a more gen
sensor–actuator setup than those required in previously discu
approaches.

Acknowledgments
This research has been sponsored through a research gra

the National Science Foundation~CMS-9457305!, whose support
has been greatly appreciated.

References
@1# Agbabian, M. S., Masri, S. F., Miller, R. K., and Caughey, T. K., 1991, ‘‘Sy

tem Identification Approach to Detection of Structural Changes,’’ J. E
Mech.,117~2!, pp. 370–390.

@2# Smyth, A. W., Masri, S. F., Caughey, T. K., and Hunter, N. F., 2000, ‘‘Surve
lance of Intricate Mechanical Systems on the Basis of Vibration Signa
Analysis,’’ ASME J. Appl. Mech.,67~3!, pp. 540–551.

@3# Ewins, D. J., 1984,Modal Testing: Theory and PracticeResearch Studies
Press, Letchworth UK.

@4# Mottershead, J. E., and Friswell, M. I., 1993, ‘‘Model Updating in Structu
Dynamics: A Survey,’’ J. Sound Vib.,165~2!, pp. 347–375.

@5# Berman, A., 1979, ‘‘Mass Matrix Correction Using an Incomplete Set of Me
sured Modes,’’ AIAA J.,17~10!, pp. 1147–1148.

@6# Baruch, M., 1982, ‘‘Optimal Correction of Mass and Stiffness Matrices Us
Measured Modes,’’ AIAA J.,20~11!, pp. 1623–1626.

@7# Baruch, M., 1997, ‘‘Modal Data are Insufficient for Identification of Bot
Mass and Stiffness Matrices,’’ AIAA J.,35~11!, pp. 1797–1798.

@8# Beck, J. L., and Katafygiotis, L. S., 1998, ‘‘Updating Models and Their U
certainties. I: Bayesian Statistical Framework,’’ J. Eng. Mech.,124~4!, pp.
455–461.

@9# Ibrahim, S. R., and Mikulcik, E. C., 1997, ‘‘A Method for the Direct Identifi
cation of Vibration Parameters From the Free Response,’’ Shock Vib. Bull.,47,
Part 4, pp. 183–198.

@10# Ibrahim, S. R., 1977, ‘‘Random Decrement Technique for Modal Identificat
of Structures,’’ J. Spacecr. Rockets,14~11!, pp. 696–700.

@11# Vold, H., Kundrat, J., Rocklin, G. T., and Russell, R., 1982, ‘‘A Multiple-Inpu
Modal Estimation Algorithm for Mini Computers,’’ SAE Trans.,91~1!, pp.
815–821.

@12# Juang, J. N., and Pappa, R. S., 1985, ‘‘An Eigensystem Realization Algori
for Modal Parameter Identification and Model Reduction,’’ J. Guid. Cont
Dyn., 8~5!, pp. 620–627.
Transactions of the ASME



e

c

c

u

m

d

o

es
ecr.

ent
id.

g
A

of
ding

the
dv.

es
st.

m

is,

on
@13# Juang, J. N., Cooper, J. E., and Wright, J. R., 1988, ‘‘An Eigensystem R
ization Algorithm Using Data Correlations~ERA/DC! for Modal Parameter
Identification,’’ Cont. Theor. Adv. Technol.,4~1!, pp. 5–14.

@14# Juang, J. N., Phan, M., Horta, L. G., and Longman, R. W., 1993, ‘‘Identifi
tion of Observer/Kalman Filter Markov Parameters: Theory and Experimen
J. Guid. Control Dyn.,16~2!, pp. 320–329.
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Analysis of a Three-Dimensional
Crack Terminating at an Interface
Using a Hypersingular Integral
Equation Method
Using a body force method and the finite-part integral concepts, a set of hypersin
integral equations for a vertical crack terminating at an interface in a three-dimensio
infinite bimaterial subjected to arbitrary loads are derived. The stress singularity ord
and singular stress fields around the crack front terminating at the interface are obta
by the main-part analytical method of hypersingular integral equations. Then, a num
cal method for the solution of the hypersingular integral equations in case of a rec
gular crack is proposed, in which the crack displacement discontinuities are app
mated by the product of basic density functions and polynomials. Numerical solution
the stress intensity factors of some examples are given.@DOI: 10.1115/1.1488938#
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1 Introduction
In recent decades, the use of new materials has been incre

in a wide range of engineering fields and the accurate evalua
of interface strength in dissimilar materials has become very
portant. Considerable research has been done to evaluate the
intensity factors and crack-opening displacement for cracks in
similar materials~@1–4#!. However, most of these works are o
two-dimensional cases. Due to the mathematical difficulties, th
are not any analytical methods for three-dimensional crack p
lems. However, several numerical methods are available~@5–8#!.
Lee and Keer@3# evaluated the stress intensity factors of a cra
meeting the interface by a body force method, but they didn’t g
the singular stress field, and consider the singularity near the c
front at the interface in their numerical method. Noda et al.@9#
studied mixed-mode stress intensity factors of an inclined se
elliptical surface crack by a body force method, in which t
unknown body force densities were approximated by the prod
of fundamental density functions and polynomials. This numer
method was applied by Wang and Noda@10# to investigate the
stress intensity factors of a three-dimensional rectangular c
using the body force method.

In the present paper, the hypersingular integral equation me
based on the body force method is applied to solve the problem
a three-dimensional vertical crack terminating at an interface,
the stress singularities and singular stress field around the c
front terminating at the interface are obtained by the main-p
analytical method of singular integral equations. Based on th
theoretical solutions, the numerical approach suggested by N
and Kobayashi@9# will be used to obtain highly reliable numerica
results of stress intensity factors.

2 General Solutions and the Hypersingular Integral
Equation for a Planar Crack Meeting the Bimaterial
Interface

A fixed rectangular Cartesian systemxi ( i 51,2,3) is used. Con-
sider two dissimilar half-spaces bonded together along
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MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 20, 20
final revision, November 5, 2001. Associate Editor: J. R. Barber. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, De
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x1-x3–plane. Suppose that the right half-space~x2-plane! is occu-
pied by an elastic medium with elastic constants (m1 ,n1) and the
left half-space~2x2-plane! is occupied by an elastic medium wit
elastic constants (m2 ,n2). The crack is assumed to be in a plan
normal to thex3-axis ~Fig. 1!. Based on the body force metho
~@3#!, the displacements at a pointx in the materials can be ex
pressed as

uk~x!5E
S
Tki~x,j!ũi~j!ds~j! i ,k51,2,3 (1)

where ũi5ui
12ui

2 is the i th displacement discontinuity of the
crack surface, and

Tki~x,j!5H 2m1n1

122n1

]Gk j~x,j!

]j j
d3i1m1

3F]Gki~x,j!

]j3
1

]Gk3~x,j!

]j i
G J

j350

j 51,2,3 (2)

in which Gi j (x,j) is the Green’s function~@3,11#!, which repre-
sents thexi-direction displacement at pointx produced by a unit
load applied at pointj in thexj -direction. Then, the correspondin
stress field can be obtained by use of the constitutive relatio
The stresses at a pointx outside of crack surfaceS are written as
follows:

s i j ~x!5E
S
Ski j~x,j!ũk~j!ds~j! (3)

where

Ski j~x,j!5
2m1n1

122n1

]Tlk~x,j!

]xl
d i j 1m1

3F]Tik~x,j!

]xj
1

]Tjk~x,j!

]xi
G

l 51,2,3. (4)

The traction boundary conditions of the crack surface are

s3i
1~x!52pi~x! xPS. (5)

1;
the
art-
nta
after
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Here the superscript1 refers to the upper surface of the crac
and pi(x) represents the loading on the crack surface due to
ternal pressure or external loading, and it can obtained from
solution for the loading of the uncracked solid. Using bound
condition~5! and the finite-part integral concepts, the hypersing
lar integral equations for unknown displacement discontinui
can be obtained:

m1

p~k111! E5
S

Fk121

2r 1
3 dab1

3~32k1!

4r 1
3 r 1,ar 1,b

1Kab~x,j!G ũb~j!ds~j!52pa~x! a,b51,2 xPS

(6)

m1

p~k111! E5
S

F 1

r 1
3 1K0~x,j!G ũ3~j!ds~j!52p3~x! xPS

(7)

where *5 is the symbol of the finite-part integral,r 1 is the distance
from pointx(x1 ,x2,0) to pointj(j1 ,j2,0), r 2 is the distance from
point x(x1 ,x2,0) to a symmetric point (j1 ,2j2,0) of pointj, and

K11~x,j!5
2Ak1~k116!12B25C

4r 2
3 2

24Ax2j2

r 2
5

2
3~4Ak12C!~x21j2!2

4r 2
5 1

30Ax2j2~x21j2!2

r 2
7

2
3~2Ak11Ak1

21B22C!

2r 2r 3
2 (8)

K12~x,j!5~x12j1!F3C~x21j2!

4r 2
5 1

30Ax2j2~x21j2!

r 2
7

1
3A~k121!x2

r 2
5 1

1

2
~Ak11B2C!

3S 1

r 2
2r 3

2 1
1

r 2
3r 3

D G (9)

K21~x,j!5~x12j1!

3F3~4A14Ak12C!~x21j2!

4r 2
5 1

3A~k121!x2

r 2
5

2
30Ax2j2~x21j2!

r 2
7 2

1

2
~Ak11B2C!

3S 1

r 2
2r 3

2 1
1

r 2
3r 3

D G (10)

K22~x,j!5
A1B2C

2r 2
3 1

3~C24A!~x21j2!2

4r 2
5 1

24Ax2j2

r 2
5

2
30Ax2j2~x12j1!2

r 2
7 (11)

K0~x,j!5
2C23A~k1

222k113!

2r 2
3

1
3A@12x2j22~32k1!~k121!~x21j2!2#

2r 2
5

1
3~2Ak11Ak1

21B22C!

2r 2r 3
2 (12)

and
Journal of Applied Mechanics
k,
in-
the
ry
u-
ies

r 15A~x12j1!21~x22j2!2, r 25A~x12j1!21~x21j2!2,

r 35r 21x21j2 ,

r 1,a5~ja2xa!/r 1 , A5~m12m2!/~m11k1m2!,

B5~k2m12k1m2!/~m21k2m1!.

S5~m12m2!/~m11m2!, C5S~k111!,

k15324n1 , k25324n2 .

Equation~7! is the same as that given by Lee and Keer@3#.

3 Stress Singularity Near the Crack Front at the In-
terface

According to the elastic theory@12#, the displacement disconti
nuities of the crack surface near a pointj0 at the interface can be
assumed as

ũk~j!5Dk~j0!j2
lk 0,Re~lk!,1 k51,2,3 (13)

whereDk(j0) is a nonzero constant related to pointj0 , andlk is
the stress singular index near the crack front meeting the interf
Consider a small semicircle domainS« on the crack surface in-
cluding point j0 as shown in Fig. 1. Lett5j2 /x2 , h5j1 /x2 ,
x15x2ctgw, and x2→0, and using the main-part analytica
method~@12,13#!, the following relations can be derived:

E5
Se

ũ1

r 1
3 dj1dj25D1~j0!x2

l121E5
0

`

tl1dt

3E
2`

` dh

@~h2ctgw!21~12t !2#3/2

>22pl1D1~j0!x2
l121 cot~l1p! (14)

E5
Se

~x12j1!2

r 1
5 ũ1dj1dj2>2

2

3
pl1D1~j0!x2

l121 cot~l1p!

(15)

E
S«

ũ2

r 2
3 dj1dj2>2pl2D2~j0!x2

l221 1

sin~l2p!
(16)

E
S«

x2j2

r 2
5 ũ2dj1dj2>

2

9
pl2~12l2

2!D2~j0!x2
l221 1

sin~l2p!

(17)

Fig. 1 Problem configuration
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~x21j2!2

r 2
5 ũ2dj1dj2>

4

3
pl2D2~j0!x2

l221 1

sin~l2p!

(18)

E
S«

x2j2~x12j1!2

r 2
7 ũ2dj1dj2

>
8

45
pl2~12l2

2!D2~j0!x2
l221 1

sin~l2p!
(19)

E
S«

x2j2~x21j2!2

r 2
7 ũ1dj1dj2

>
2

45
pl1~12l1

2!D1~j0!x2
l121 1

sin~l1p!
(20)

E
S«

ũ3

r 2r 3
2 dj1dj2>

2

3
pl3D3~j0!x2

l321 1

sin~l3p!
. (21)

Using the above relations, from Eqs.~6! and~7!, the stress singu-
lar index can be obtained. It can be shown thanl25l35l, and

4Al212 cos~lp!2A2B50 (22)

cos~l1p!5S. (23)

The characteristic Eq.~22! is coincident with that for the two-
dimensional case~@1,4#!, and ~23! is coincident with that for the
antiplane case~@2#!. The stress intensity factors at the crack fro
on the interface are defined by

K15 lim
r→0

s33~r ,u! uu50~2r !12l (24)

K115 lim
r→0

s23~r ,u! uu50~2r !12l (25)

K1115 lim
r→0

s13~r ,u! uu50~2r !12l1. (26)

4 Singular Stress Field Near the Crack Front at the
Interface

Based on relation~13!, the singular stress field around the cra
front terminating at the interface can be obtained by the main-
analytical method. For a pointp near the crack front in the mate
rial 1, using following relations:

E
S«

S 1

r 1
3 1

6x3
2

r 1
5 2

15x3
4

r 1
7 D ũ3dj1dj2>

2pl~12l!D3~j0!r l21

sin~lp!

3sinu sin~22l!u (27)

E
S«

ũ3

r 2
3 dj1dj2>

2pD3~j0!r l21 sinl~p2u!

sin~lp!sinu
(28)

E
S«

~x21j2!2ũ3

r 2
5 dj1dj2>

2pD3~j0!r l21

3 sin~lp!sinu
@sinl~p2u!

2l sinu cos~lp1u2lu!# (29)

E
S«

S 12x3
2

r 2
5 2

15x3
4

r 2
7 2

15~x21j2!2x3
2

r 2
7 D ũ3dj1dj2>0 (30)

E
S«

S 18x2j2

r 2
5 2

180x2j2x3
2

r 2
7 1

210x2j2x2
4

r 2
9 D ũ3dj1dj2

>
4pl~12l2!D3~j0!r l21 cosu cos~lp12u2lu!

sin~lp!

(31)
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E
S«

S 3

r 2r 3
22

6x3
2

r 2
3r 3

22
12x3

2

r 2
2r 3

3 1
6x3

4

r 2
3r 3

4 1
6x3

4

r 2
4r 3

3 1
3x3

4

r 2
5r 3

2D ũ3dj1dj2

>2
2plD3~j0!r l21 cos~lp1u2lu!

sinlp
(32)

E
S«

~x22j2!x3S 3

r 1
52

15x3
2

r 1
7 D ũ2dj1dj2

>2
2pl~12l!D2~j0!r l21

sin~lp!
sinu cos~22l!u

(33)

E
S«

~x21j2!x3ũ2

r 2
5 dj1dj2>

2plD2~j0!r l21

3 sin~lp!
sin~lp1u2lu!

(34)

E
S«

x2x3ũ2

r 2
5 dj1dj2>2

2plD2~j0!r l21 cosu

3 sin~lp!sin2 u
@sin~lp2lu!

1l sinu cos~lp1u2lu!# (35)

E
S«

x2x3
3ũ2

r 2
7 dj1dj2>2

2plD2~j0!r l21 cosu

3 sin~lp!sin2 u
@3 sinl~p2lu!

13l sinu cos~lp1u2lu!

1l~12l!sin2 u sin~lp12u2lu!# (36)

E
S«

x3~x21j2!3ũ2

r 2
7 dj1dj2>

2plD2~j0!r l21

15 sin~lp!
@3 sin~lp1u

2lu!1~12l!sinu cos~lp12u

2lu!# (37)

E
S«

x2j2~x21j2!x3S 90

r 2
72

210x3
2

r 2
9 D ũ2dj1dj2

>
4pl~12l2!D2~j0!r l21 cosu sin~lp12u2lu!

sin~lp!

(38)

E
S«

1

2
x3S 3

r 2
2r 3

2 1
3

r 2
3r 3

2
2x3

2

r 2
3r 3

32
3x3

2

r 2
4r 3

22
3x3

2

r 2
5r 3

D ũ2dj1dj2

>2
2plD2~j0!r l21 cos~lp1u2lu!

sinlp
(39)

herer 1 is the distance from pointp(x1 ,x2 ,x3) to pointj(j1 ,j2,0)
and r 2 is the distance from pointp(x1 ,x2 ,x3) to the symmetric
point (j1 ,2j2,0) of point j(j1 ,j2,0), e.g., r 1

5A(x12j1)21(x22j2)21x3
2, r 25A(x12j1)21(x21j2)21x3

2,
r 35r 21x21j2 , from ~3!, the singular stress can be expressed

s33
1 ~p!5

m1lvD3~j0!

~11k1!sin~lp!r 12l f 331
1 ~u!

1
m1lvD2~j0!

~11k1!sin~lp!r 12l f 332
1 ~u! p/2<uuu<p

(40)

f 331
1 ~u!5

1

v
$2 cos~12l!u12~12l!sinu sin~22l!u

1@A~122l!~21l!1B#cos~lp1u2lu!1A~12l!

3~122l!cos~lp13u2lu!% (41)
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1

v
$22~12l!sinu cos~22l!u1@2Ak123A1B

12Ag~11l!12A~12l!~21l!#sin~lp1u2lu!

12A~12l!~21g1l!sin~lp13u2lu!% (42)

and here v5@22A2B22l(A2B)#, g5(32k1)/2(k121).
The superscript 1 refers to the material 1 marked in Fig. 1.

For a pointp near the crack front in the material 2, using th
following relations:

E
S«

S 1

r 1
32

3x3
2

r 1
5 D ũ3dj1dj2>

2plD3~j0!r l21

sin~lp!
cos~12l!u

(43)

E
S«

1

2
x3S 3

r 1
2r 4

2 1
3

r 1
3r 4

2
2x3

2

r 1
3r 4

32
3x3

2

r 1
4r 4

22
3x3

2

r 1
5r 4

D ũ2dj1dj2

>
2plD2~j0!r l21 sin~12l!u

sinlp
(44)

E
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F 3

r 1r 4
22

6x3
2

r 1
3r 4

22
12x3

2

r 1
2r 4

3 1
6x3

4

r 1
3r 4

4 1
6x3

4

r 1
4r 4

3 1
3x3

4

r 1
5r 4

2G ũ3dj1dj2

>
2plD3~j0!r l21 cos~12l!u

sinlp
(45)

E
S«

F 3

r 1
3r 4

1
3

r 1
2r 4

22
18x3

2

r 1
5r 4

2
18x3

2

r 1
4r 4

22
12x3

2

r 1
3r 4

3 1
15x3

4

r 1
7r 4

1
15x3

4

r 1
6r 4

2 1
12x3

4

r 1
5r 4

3

1
6x3

4

r 1
4r 4

4G ũ3dj1dj2>2
pl~12l!D3~j0!r l21

sinlp
@cos~12l!u

1cos~32l!u# (46)

E
S«

~x22j2!x3ũ2

r 1
5 dj1dj2>2

2plD2~j0!r l21

3 sin~lp!
sin~12l!u

(47)

E
S«

~x22j2!x3
3

r 1
7 ũ2dj1dj2

>
plD2~j0!r l21

15 sin~lp!
@2~32l!sin~12l!u

1~12l!sin~32l!u# (48)

E
S«

x3S 3

r 1
2r 4

2 1
3

r 1
3r 4
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2x3
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r 1
3r 4

32
3x3

2

r 1
4r 4

22
3x3

2

r 1
5r 4

D ũ2dj1dj2

>
2plD2~j0!r l21 sin~12l!u

sinlp
(49)

wherer 45r 22x21j2 , the singular stresses can be expressed

s13
2 ~p!52

m1m2l1D1~j0!

~m11m2!sin~l1p!r 12l1
cos~12l1!u

2p/2,u<p/2 (50)

s23
2 ~p!5

m1lvD3~j0!

~11k1!sin~lp!r 12l f 231
2 ~u!

1
m1lvD2~j0!

~11k1!sin~lp!r 12l f 232
2 ~u! 2p/2,u<p/2

(51)
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s33
2 ~p!5

m1lvD3~j0!

~11k1!sin~lp!r 12l f 331
2 ~u!

1
m1lvD2~j0!

~11k1!sin~lp!r 12l f 332
2 ~u! 2p/2,u<p/2

(52)

f 231
2 ~u!5

1

v
$@G~k11B!2~12A!~k121!2l~122A1B!#sin~1

2l!u2~12l!~12B!sin~32l!u% (53)

f 232
2 ~u!52

1

v
2~12l!~12B!sinusin~22l!u1cos~12l!u

(54)

f 331
2 ~u!52

1

v
2~12l!~B21!sinu sin~22l!u1cos~12l!u

(55)

f 332
2 ~u!5

1

v
@~A22B1112Al2Bl2l!sin~12l!u

2~12B!~12l!sin~32l!u#. (56)

Here the superscript 2 refers to the material 2 marked in Fig
Other singular stresses near pointj0 can also be obtained by us
of the above method. Using definitions~24!–~26!, relation ~13!
and solutions~50!–~52!, the stress intensity factors at the cra
front on the interface can be written as

K I5
212lm1lvD3~j0!

~11k1!sin~lp!
5 lim

j2→0

212llm1vũ3

~k111!sinlpj2
l (57)

K II5
212lm1lvD2~j0!

~11k1!sin~lp!
5 lim

j2→0

212llm1vũ2

~k111!sinlpj2
l (58)

K III 5
212l1m1m2l1D1~j0!

~m11m2!sin~l1p!
5 lim

j2→0

212l1m1m2ũ1

~m11m2!sin~l1p!j2
l1

.

(59)

Using relations~56!–~59!, the singular stresses solutions~40!,
~50!–~52! are expressed:

s33
1 5

K I

~2r !12l f 331
1 ~u!1

K II

~2r !12l f 332
1 ~u! p/2<uuu<p

(60)

s13
2 52

K III

~2r !12l1
cos~12l1!u 2p/2,u<p/2 (61)

s23
2 5

K I

~2r !12l f 231
2 ~u!1

K II

~2r !12l f 232
2 ~u! 2p/2,u<p/2

(62)

s33
2 5

K I

~2r !12l f 331
2 ~u!1

K II

~2r !12l f 332
2 ~u! 2p/2,u<p/2.

(63)

In the case of homogeneity, solutions~60!–~63! are the same as
that given by Tang and Qin@13#.

5 Numerical Procedure
Consider a rectangular crack meeting the interface in a th

dimensional infinite elastic solid under a normal load as shown
Fig. 2. Using its known behavior near the crack front and
fundamental solutions, the crack-opening displacement can
written as
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ũ3~j1 ,j2!5F3~j1 ,j2!j2
lA~a22j1

2!~2b2j2!. (64)

To numerically solve the unknown functionũ3 , the unknown
function Fi(j1 ,j2) is assumed as

F3~j1 ,j2!5(
n51

N

a3nGn~j1 ,j2! (65)

wherea3n is unknown constantsN5(K11)(L11), and

G1~j1 ,j2!51, G2~j1 ,j2!5j1 , . . . ,

GK11~j1 ,j2!5j1
K , GK12~j1 ,j2!5j2 ,

GK13~j1 ,j2!5j1j2 , . . . , G2K12~j1 ,j2!5j1
Kj2 , . . . ,

G~K11!~L11!~j1 ,j2!5j1
Kj2

L . (66)

Substituting~64! and ~65! into ~7!, a set of algebraic linea
equations for unknowna3n can be obtained:

(
n51

N

a3n@ I 3n
1 ~x1 ,x2!1I 3n

2 ~x1 ,x2!#52
p~k111!

m1
p3~x1 ,x2!

(67)

where

I 3n
1 ~x1 ,x2!5E5

S

1

r 1
3 v2~j1 ,j2!dj1dj2 (68)

I 3n
2 ~x1 ,x2!5E

S
K0~x,j!v2~j1 ,j2!dj1dj2 (69)

in which

v2~j1 ,j2!5j2
lA~a22j1

2!~2b2j2!Gn~j1 ,j2!. (70)

Integral~69! is general one, and can be numerically calculat
Integral ~68! is hypersingular one, and must be treated bef
being numerically evaluated. Using the finite-part integral meth
~@14#! and the following relations

j15x11r 1 cosu1 j25x21r 1 sinu1 (71)

v2~j1 ,j2!5v2~x1 ,x2!1D21~x1 ,x2 ,u1!r 1

1D22~x1 ,x2 ,r 1 ,u1!r 1
2, (72)

the hypersingular integral~68! can be written as

I 3n
1 ~x1 ,x2!5E

0

2pF2
v2~x1 ,x2!

R~u1!
1D21~x1 ,x2 ,u1!ln R~u1!

1E
0

R~u1!

D22~x1 ,x2 ,r 1 ,u1!dr1Gdu (73)

Fig. 2 A rectangular crack meeting the interface
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where D21(x1 ,x2 ,u1), and D22(x1 ,x2 ,r 1 ,u1) are known func-
tions, and can be derived by the Taylor expansion method. N
the integrals in~73! are generals, and can be calculated nume
cally. Using the above method, Eq.~6! can also be numerically
solved.

6 Numerical Results
In order to verify the above method and illustrate its applic

tion, numerical results for a rectangular crack are presented in
section. Consider a rectangular crack meeting the interface
three-dimensional infinite elastic solid under a uniform tens
load s33

` in infinity as shown in Fig. 2. The dimensionless stre
intensity factor of the crack front for mode I is defined as

F15K I /s33
` b12l. (74)

The collocation point number is taken as 20320 for the present
results. Before the results for the general cases are presented
special cases of a square crack in homogenous materials and
face cracks are compared to other results. In the case of hom
neous materials, the numerical results of the stress intensity fa
for a square crack are given in Table 1, and compared with th
given by Wang and Noda@10#. It is shown that the results ar
convergent, and the polynomial exponentsK5L59 are enough
for a satisfied result precision in this case, and these polynom
exponents will be taken for the following results.

A surface crack corresponds to the limiting case whenm2 /m1
50, and the values of the stress intensity factors at the crack f
point ~0, 2b, 0! are given in Table 2. It is shown that prese
results agree with those by Noda and Wang@15# and Isida and
Yoshida@16#.

Numerical results for two typical examples are given belo
Figure 3 gives the maximum dimensionless stress intensity fac
at the center of the crack front on the interface varied with
ratio of m2 /m1 for different ratios ofa/b. Obviously, the varia-
tions of the stress intensity factors for the cracks with differe
ratios of a/b are similar, and more gently whenm2 /m1>20. So
the material 2 can be treated as a rigid medium whenm2 /m1
>20. The dimensionless stress intensity factors along the c
front at the interface are shown in Fig. 4 for different ratios ofa/b
(m2 /m150.5) and compared with the two-dimensional case. I
shown that the stress intensity factor at the center of the cr
front for the case ofa/b>8 is close to that of the two-dimensiona
case. This indicates that the stress intensity factor at the cent
the crack front for the case ofa/b>8 can be calculated as th
two-dimensional case.

7 Conclusion
A set of hypersingular integral equations of a flat crack term

nating at a bimaterial interface in a three-dimensional infin
solid subjected to arbitrary loads is derived. The behaviors of
crack displacement discontinuities near the crack front meetin
the interface are analyzed by the main-part analytical method
hypersingular singular integral equations, and the singular ord
are given. Then, the singular stress fields around the crack f
terminating at the interface are obtained. Although the express
of the displacements and stresses in the materials are compl
modality, the analytical solutions of singular stresses around
crack front are brief.

A numerical method for hypersingular integral equations o
rectangular crack terminating at the bimaterial interface is p
posed, and the crack displacement discontinuities are appr
mated by products of a series of power polynomials and fun
mental solutions, which exactly express the singularities
stresses near the crack front. This technique should be impro
for other shape cracks in the future.

Highly reliable numerical results of stress intensity factors
mode I along the crack front are obtained. The numerical res
show that this numerical technique for a rectangular crack is s
cessful, and the solution precision is satisfied. From the nume
Transactions of the ASME



1

.4446

.4396

.4451

.4464

.4523

.4535
.4536
Table 1 Convergence of stress intensity factor F1 „x 2Ä0, aÕbÄ1, m2 Õm1Ä1, n1Än2Ä0.3, KÄL …

x1 /a 0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/1

K56 0.7522 0.7505 0.7468 0.7383 0.7260 0.7072 0.6821 0.6506 0.6085 0.5521 0
K57 0.7539 0.7534 0.7487 0.7391 0.7243 0.7046 0.6803 0.6508 0.6122 0.5528 0
K58 0.7512 0.7508 0.7474 0.7396 0.7260 0.7061 0.6803 0.6489 0.6102 0.5536 0
K59 0.7534 0.7512 0.7462 0.7379 0.7255 0.7072 0.6821 0.6497 0.6090 0.5521 0
K510 0.7534 0.7517 0.7465 0.7376 0.7245 0.7065 0.6827 0.6511 0.6088 0.5499 0
K511 0.7533 0.7517 0.7466 0.7377 0.7245 0.7064 0.6827 0.6514 0.6087 0.5491 0
Wang 0.7534 0.7517 0.7465 0.7376 0.7245 0.7066 0.6828 0.6512 0.6086 0.5492 0
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Fig. 3 Stress intensity factor F1 at the center of the crack front
on the interface „x 2Ä0…

Fig. 4 Stress intensity factor F1 along the crack front on the
interface for m2 Õm1Ä0.5

Table 2 Dimensionless stress intensity factor F1 for m2 Õm1
Ä0, n1Ä0.3 at x 1Ä0, x 2Ä2b

a/b 1 2 4 8 10 `

Present 0.810 1.113 1.387 1.530 1.552 158
Noda 0.810 1.112 1.386 1.529 1.550 -
Isida 0.803 1.069 1.318 1.481 - 1586
Journal of Applied Mechanics
solutions, it is shown that the stress intensity factors vary m
gently whenm2 /m1>20, and the material 2 can be treated as
rigid medium in this case. Moreover, the stress intensity facto
the center of the crack front for the case ofa/b>8 is close to that
of the two-dimensional case.
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Plane Thermal Stress Analysis of
an Orthotropic Cylinder Subjected
to an Arbitrary, Transient,
Asymmetric Temperature
Distribution
A closed-form, analytical solution is presented for the transient, plane thermal s
analysis of a linearly elastic, homogeneously orthotropic hollow cylinder subjected t
arbitrary temperature distribution. The thermoelastic solution, obtained by a stress f
tion approach, can be used as the basis for the corresponding thermoviscoelastic so
for thermorheologically simple viscoelastic materials by invoking the viscoelastic Co
spondence Principle. This solution can also be directly extended to the class of w
inhomogeneously orthotropic cylinders using perturbation methods. The transient a
metric temperature field is characterized by Fourier-Bessel eigenfunction expansions
analytically derived stress function satisfies a linear, fourth-order inhomogeneous pa
differential equation and the Cesaro integral conditions, which assure the existence
single-valued displacement field. The corresponding thermal stresses are then com
by the stress-stress function relations. A key feature of the analytical solution is tha
hoop, radial, and shear stresses, due to the transient arbitrary temperature distribu
are expressed explicitly in terms of the scalar temperature field. A polymer comp
example is presented to validate the current method and to qualitatively illustrate
distribution of thermal stresses due to an asymmetric temperature distribution. Nume
results are presented for the thermally driven hoop, radial and (interlaminar) sh
stresses in a hollow, hoop-wound glass/epoxy cylinder. This analysis demonstrate
potentially debilitating interlaminar shear stresses can develop in laminated compo
when subjected to an even modest transient asymmetric temperature distribution.
magnitudes depend on the severity of the spatial and temporal thermal gradients
circumferential direction. While still relatively low compared to the hoop stress, the s
stress may cause thermal failure due to the typically low interlaminar shear strengt
laminated composite materials.@DOI: 10.1115/1.1491268#
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Introduction
Thermal stress analysis is an important issue for laminated

terials. Laminated composite structures are being deployed in
creasingly severe thermal environments, as well as being
jected to complex spatial and temporal thermal gradients du
their manufacture. This issue is especially critical for lamina
materials possessing relatively low interlaminar shear strength
thermally induced shear stresses can initiate intra and interlam
failure by delamination.

Generally, there are two kinds of thermal stress analyse
laminated materials: thermoelastic and thermoviscoelastic. T
moelastic treatments assume that the material is elastic under
mal loading and thermal stresses are independent of temper
history. On the other hand, thermoviscoelastic treatments ass
that the material is viscoelastic, hence greatly affected by t
perature and thermal stresses that are generally history depen
Thermoelasticity usually applies to solids at temperatures w
below their glass-transition temperatures so that the material’s

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
24, 2001; final revision, February 28, 2002. Associate Editor: H. Gao. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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coelastic behavior can be neglected, while thermoviscoelast
applies to solids at temperatures close to and above their g
transition temperature. For thermorheologically simple viscoe
tic materials, the thermoviscoelastic solution can be obtained
rectly from the corresponding thermoelastic solution by invoki
the viscoelastic Correspondence Principle~@1,2#!; as a result, the
thermoelastic solution is relevant to a wide variety of elastic a
viscoelastic materials.

In thermoelastic problems, there are two major types of ther
stress analyses. The first type applies to linearly elastic, hom
neous domains such that an analytic solution can be derived u
a displacement or stress formulation. Padovan@3# studied the ef-
fects of mechanical and thermal anisotropy on the thermoela
field of laminated cylinders. Kalam and Tauchert@4# used an Airy
stress function formulation to derive a closed-form solution
the thermal stresses in an orthotropic cylinder subject to a ste
state asymmetric temperature distribution. Iwaki@5# provided an
analytical solution for the transient thermal stresses in fully a
partly cooled circular rings. Experimental results using a pho
elasticity technique were presented to compare with theore
solutions. Good agreement was found between the numerica
sults and experimental data. Kardomateas@6,7# used a displace-
ment formulation to derive the transient, axisymmetric therm
stresses in orthotropic hollow cylinders; Hankel asymptotic
pansions of the Bessel functions of the first and second kind w
small and large arguments were employed to obtain the solu
for extremely short and long times. Sugano@8# presented an ana

st
on
art-

nta
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lytical solution for an asymmetric plane thermal stress problem
an isotropic, inhomogeneous circular ring using the Airy str
function method. The Young’s modulus and thermal conductiv
were assumed to be power-law functions of the radial coordin
while the coefficient of thermal expansion was assumed to be
arbitrary function of temperature. His numerical results show
that the temperature and thermal stresses were greatly affecte
the degree of the material’s nonlinearities. Zibdeh and Al Far
@9# presented a three-dimensional steady-state stress analys
homogeneous hollow composite cylinders subjected to an as
metric temperature distribution. In their analysis, a general
placement formulation was used in each ply with continuity co
ditions being imposed at each layer interface. Their res
showed that the cylinder’s stress response was sensitive to
posite thickness, fiber orientation, and ply stacking sequence

The second type thermoelastic stress analysis applies to i
mogeneous domains such that an analytical solution is intract
and therefore an approximate solution is sought. Hata and Ats
@10# employed a perturbation method to study the axisymme
transient thermal stresses in a transversely anisotropic hollow
inder with temperature-dependent coefficient of thermal exp
sion and modulii. The applicability of their technique is qui
general, except the solution procedure is mathematic
tedious—in addition to being approximate. Tauchert@11# used the
Rayleigh-Ritz method to analyze the plane stress/strain, axis
metric thermal stresses in an inhomogeneous, anisotropic cylin
The assumed displacement field was expanded by a polyno
series that satisfied the imposed kinematic boundary conditi
The coefficients of polynomial series were then determined
requiring the total potential energy be a minimum subject to p
scribed boundary conditions using Lagrangian multiplie
Tauchert@12# further extended the Ritz method to solving a sim
lar problem in an inhomogeneous, anisotropic, finite elastic cy
der. Both of Tauchert’s analyses assume that the temperature
displacement fields can be approximated by power-series re
sentations. Using the stress function formulation, Kalam@13# de-
rived an approximate solution for the asymmetric thermoela
analysis of an orthotropic cylinder. The cylinder’s stiffness a
coefficient of thermal expansion were assumed to depend on
perature in an arbitrary fashion. A complementary energy va
tional principle was used in the study to determine the coefficie
of the approximate solution. To demonstrate the accuracy of
method, a finite element solution, as well as an exact solut
were presented to compare with the numerical results. Hyer
Cooper@14# employed a complementary virtual work principle
evaluate the thermal stresses in orthotropic composite tube
stress formulation was used in the study with the edge effect b
ignored. Huang and Taucher@15# used an incremental analys
with large deformations to investigate the thermal stresses indu
in nonlinear angle-ply composite laminates under a nonunifo
temperature distribution. The displacement fields were expre
by series approximations that were determined by the principl
minimum potential energy.

The aim of the present work is to use a stress function appro
to extend the work of Kalam and Tauchert@4# to present an ana
lytical solution for a class of plane thermal stress boundary va
problems having thermal boundary conditions and initial con
tions being expressed by Fourier series representations.

Transient, Plane Temperature Distribution
The transient, plane temperature distributionT(r ,u,t) in an

elastic, homogeneously orthotropic hollow cylinder~inner radius
a, outer radiusb! is governed by the following energy equation

Kr S ]2T

]r 2 1
1

r

]T

]r D1Ku

]2T

]u2 5%c
]T

]t
1S~r ,u,t ! (1)

where, respectively,r andu are radial and circumferential coord
nates measured relative to the cylinder’s central axis,Kr andKu
are the cylinder’s radial and circumferential~hoop! thermal con-
Journal of Applied Mechanics
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ductivities, andr andc are its mass density and specific heat. A
properties are assumed to be independent of temperature,
and position. The energy source~or sink! term,S(r ,u,t), may be
due, for example, to a volumetric exothermic~or endothermic!
chemical reaction or electromagnetic energy deposition. With
loss of generality,T(r ,u,t) can be interpreted as the temperatu
change relative to some reference temperature, say the ‘‘str
free’’ temperature,Tref . The Robin-type boundary conditions an
initial condition considered here are

r 5a, L11

]T

]r
1L12T50; (2)

r 5b, L21

]T

]r
1L22T50 (3)

t50, T~r ,u,0!5F~r ,u! (4)

where Li j ,i , j 51,2, are the thermal boundary condition coef
cients andF(r ,u) is the initial temperature distribution.

Using an eigenfunction expansion, the general solution of~1!
can be written

T~r ,u,t !5(
i 51

`

a0iR0~m0i r !e2zm0i
2 t

1(
n51

` S (
i 51

`

aniRkn
~mnir !cos~nu!

1(
i 51

`

bniRkn
~mnir !sin~nu!D e2zmni

2 t (5)

where the orthogonal eigenfunctionsRkn
(mnir ) are defined by

Rkn
~mnir !5

Jkn
~mnir !

L21mniJkn
8 ~mnib!1L22Jkn

~mnib!

2
Ykn

~mnir !

L21mniYkn
8 ~mnib!1L22Ykn

~mnib!
(6)

whose normN(mnir ,kn) is given by

N~mnir ,kn!5E
a

b

rRkn

2 ~mnir !dr. (7)

The corresponding eigenvaluesmni satisfy the characteristic equa
tions

S L11H mniJkn21~mnia!2
kn

a
Jkn

~mnia!J 1L12Jkn
~mnia! D

* S L21H mniYkn21~mnib!2
kn

b
Ykn

~mnib!J 1L22Ykn
~mnib! D

2S L11H mniYkn21~mnia!2
kn

a
Ykn

~mnia!J 1L12Ykn
~mnia! D

* S L21H mniJkn21~mnib!2
kn

b
Jkn

~mnib!J 1L22Jkn
~mnib! D

50,~n50,1,2, . . . ;i 51,2,3, . . . ! (8)

wherekn5nAKu /Kr depends upon the thermal orthotropy rat
and z5Kr /rc is the thermal diffusivity in the radial direction
Here, Jkn

and Ykn
are ~cylindrical! Bessel functions of the firs

and second kind, respectively, of orderkn .
All unknowns a0i , ani , andbni in ~5! are determined by the

initial condition
SEPTEMBER 2002, Vol. 69 Õ 633
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F~r ,u!5(
i 51

`

a0iR0~m0i r !1(
n51

` S (
i 51

`

aniRkn
~mnir !cos~nu!

1(
i 51

`

bniRkn
~mnir !sin~nu!D (9)

which, by Fourier series expansion, leads to

(
i 51

`

a0iR0~m0i r !5
1

2p E
0

2p

F~r ,u!du (10)

(
i 51

`

aniRkn
~mnir !5

1

2p E
0

2p

F~r ,u!cos~nu!du (11)

(
i 51

`

bniRkn
~mnir !5

1

2p E
0

2p

F~r ,u!sin~nu!du. (12)

Using Fourier-Bessel eigenfunction expansions~in conjunction
with ~6! and ~7!!, a0i , ani , andbni can be written as

a0i5
1

N~m0i r ,0! Ea

b

rR0~m0i r !H 1

2p E
0

2p

F~r ,u!duJ dr (13)

ani5
1

N~mnir ,kn! Ea

b

rRkn
~mnir !H 1

2p E
0

2p

F~r ,u!cos~nu!duJ dr

(14)

bni5
1

N~mnir ,kn! Ea

b

rRkn
~mnir !H 1

2p E
0

2p

F~r ,u!sin~nu!duJ dr.

(15)

Stress Formulation

Plane Stress Formulation. In a linearly elastic, homoge
neously orthotropic solid, the associated stress-strain relation
a plane stress solid subjected to a temperature changeT(r ,u,t) are

« rr 5
1

Er
s rr 2

n ru

Er
suu1a rT, (16)

«uu5
1

Eu
suu2

n ru

Er
s rr 1auT, (17)

« ru5
1

2Gru
s ru (18)

where, respectively,« rr , «uu , « ru and s rr , suu , s ru are the
plane cylinderical strain and stress components;Er andEu are the
radial and circumferential elastic modulii;Gru is the in-plane,
elastic shear modulus;a r andau are the radial and circumferen
tial coefficients of thermal expansion; andn ru is the major Pois-
son’s ratio.

In transient, plane elasticity problems, the stress compon
can be related to a single stress functionF(r ,u,t) by

s rr 5
1

r

]F

]r
1

1

r 2

]2F

]u2 , (19)

suu5
]2F

]r 2 , (20)

s ru52
1

]r S 1

r

]F

]u D . (21)

In multiply connected regions, such as hollow cylinders, the n
essary and sufficient conditions for a single-valued displacem
field are: the compatibility equation
634 Õ Vol. 69, SEPTEMBER 2002
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]« ru

]u
12r

]2« ru

]r ]u
22r

]«uu

]r
2r 2

]2«uu

]r 2 2
]2« rr

]u2 1r
]« rr

]r
50

(22)

and the Cesaro integral conditions~@16#!

E
0
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For simplicity, it is convenient to define the nondimensional
tios:

k5AEu

Er
, m5A Eu

Gru
, Ma5

au

a r
. (26)

Substituting ~16!–~18! into ~19!–~21! and further substituting
those results into the compatibility Eq.~22! yields the compatibil-
ity equation in terms of the stress functionF(r ,u,t):
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Similarly, the Cesaro integral conditions expressed in terms of
stress functionF(r ,u,t) are
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Stress Function Solution. For notational convenience, th
transient temperature field can be expressed in the form
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n51

`

f n~r ,t !cosnu1(
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gn~r ,t !sinnu.

(31)

The time-independent, homogeneous solutionFh(r ,u) of ~27! is

Fh~r ,u!5A01B0r 21C0r 12k1D0r 11k1S A081B08r
21C08r

(12k)

1D08r
(11k)u1H1ru sinu1@A1r 1B1rln r 1C1r 12b
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lniD cosnu

1S (
i 51

4

Bnir
lniD sinnuG (32)

whereA0 , B0 , C0 , D0 , A08 , B08 , C08 , D08 , H1 , H18 , A1 , B1 , C1 ,
D1 , A18 , B18 , C18 , D18 , Ani , andBni are arbitrary coefficients and

b5A11~122n ru!k21m2 (33)

ln1511A12
1
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where

I 1~n!512~122n2n ru!k22n2m2 (38)

I 2~n!5A@11n2m21~~122n2n ru!k2!#22@2k~n221!#2.
(39)

Moreover, the fact that whenn50, l0i50,1,12k,11k, and when
n51, l1i51,1,11b,12b ( i 51,2,3,4) has been incorporated.

Next, substituting~32! into ~27! and using the orthogonal prop
erty of cosnu and sinnu over the interval~0,2p!, the time-
dependent particular solutionFp(r ,u,t) of ~27! is found to be
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where
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for n50,2,3, . . . (nÞ1) and
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wheren51,2, . . . . By theprinciple of linear superposition, the
general solution of~27! is then

F~r ,u,t !5Fh~r ,u!1Fp~r ,u,t !. (48)

Stress Field. Substituting the stress function~48! into ~19!–
~21!, the corresponding stress components can be determ
They must, however, simultaneously satisfy the Cesaro inte
conditions that assure a single-valued displacement in a mult
connected domain; they require

B050, (49)

H152
b2

2~12n ru!k2 B1 , (50)

H252
b2

2~12n ru!k2 B18 . (51)

It should be noted that in~32!, the term (A081B08r
21C08r

(12k)

1D08r
11k)u corresponds to a pure shear deformation that can

exist in a thermoelastic problem and thus is excluded from
stress field.

After integration by parts, the thermal stresses can be writte
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Boundary Conditions. In a pure thermoelastic problem, th
stress-free boundary conditions at the inner and outer surface

r 5a, s rr 5s ru50; (55)

r 5b, s rr 5s ru50. (56)

Plane-Strain Formulation. The plane-strain solution is ob
tained directly from the plane stress solution by replacing
plane-stress compliancesS11, S22, S12 by the corresponding
plane-strain compliancesS118 , S228 , S128 where

Si j8 5Si j 2
Si3Sj 3

S33
, i , j 51,2 (57)

S115
1

Er
, S225

1

Eu
, S1252

n ru

Er
(58)

S135S138 5
1

Grz
, S235S238 5

1

Guz
, S335S338 5

1

Ez
. (59)

The subscript 3 denotes the axial (z) direction. Likewise, the co-
efficients of thermal expansion are related through

a r85a r1nzraz , (60)

au85au1nzuaz . (61)

Also,

k85AS118

S228
, m85A 1

GruS228
, Ma85

a r8

au8
, n ru8 5

n ru~11nzu)

S118 Er
.

(62)

Polymer Composite Example and Discussion
To illustrate the use of the analysis, an orthotropic cylind

~Fig. 1! having an insulated inner boundary, a convective ou
boundary and two halves initially at two different, uniform tem
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tion
peratures is considered. The cylinder is not otherwise be
heated, so thatS(r ,u,t)50. The assumed cylinder dimension
and thermal boundary condition coefficents are:a50.05 m, b
50.1 m,L1151, L1250, L2151, L22510. The initial temperature
distribution is: F(r ,u)5T1 , 0<u<p; F(r ,u)5T2 , p<u<2p.
The material properties are taken to beEu544 GPa, Er

511 GPa, z5531027 m2/s, a r56031026/°C, au55
31026/°C, Kr51 W/m°C, Ku59 W/m°C, which are typical
values for a 60% fiber-volume-fraction hoop-wound E-gla
epoxy composite. The thermal stresses are nondimensiona

Fig. 1 Example orthotropic cylinder with imposed boundary
conditions and initial condition
Journal of Applied Mechanics
ing
s

s/
ized

using s̄ rr 5s rr /EuauT̄, s̄uu5suu /EuauT̄, s̄ ru5s ru /EuauT̄,
whereT̄5(T11T2)/2 is the axisymmetric part of the initial tem
perature.

In the example problem, the initial condition can be expres
as F(r ,u)5T̄1(T12T2)/2, 0<u<p, F(r ,u)5T̄2(T12T2)/2,
p<u<2p so that the principle of linear superposition can
applied to add the axisymmetric thermal stresses caused b
initial axisymmetric temperature field (T̄) to the asymmetric ther-
mal stresses caused by an initial asymmetric temperature dist
tion ((T12T2)/2, 0<u<p; 2(T12T2)/2, p<u<2p!. In the fol-
lowing plots,T15100°C andT2580°C; the dimensionless time
t5zt/a2, is chosen to bet50, t50.36 andt50.72, correspond-
ing to t50, t51800, andt53600 seconds, respectively. Comp
tationally, the asymmetric part of the initial condition is expand
by a Fourier Sine series: 4(T12T2)(n51,3,5,..

` sinnu/n. To obtain
sufficiently convergent results, the number of eigenvalues in
temperature distribution is taken to bei 510 andn511. All inte-
gral terms in~52!–~54! are evaluated numerically by a Gaussi
quadrature rule using 30 Gauss integration points.

The transient, surface temperature histories at three circum
ential directions~u52p/2,0,p/2! are illustrated in Fig. 2. Ast
increases, the temperature atu52p/2 increases gradually and as
ymptotically converges to that atu5p/2 due to the initial tem-
perature gradient. In the current example, the temperature his
at an arbitrary position is bounded by a horn-shape evolution

Figure 3 demonstrates the transient, radial temperature varia
Fig. 2 Surface temperature history for uÄÀpÕ2,0,pÕ2

Fig. 3 Transient temperature distribution in the radial direction for uÄÀpÕ2,pÕ2
SEPTEMBER 2002, Vol. 69 Õ 637



Fig. 4 Transient, surface temperature distribution in the circumferential direction
h

u

n
r

u
t
a

,
e

c

o
e

tion

s
a
an
,
g
site
are

rec-
hat
ec-
.
rec-
n
at

the
the

u-
m-
ent
axi-
e by
at u52p/2,p/2. As expected, the numerical results reveal t
the initial temperature difference between the two diametrica
opposite positions diminishes ast increases.

Figure 4 depicts the transient, circumferential temperat
variation atr 5a,b. At t50, the temperature distribution at th
cylinder’s inner and outer surfaces coincide due to the initial u
form distribution of temperature; the circumferential oscillatio
are the result of using a finite number of terms in the Fou
series to represent the abrupt, step change in temperatureu
5p,2p. As t increases, the temperature gradient in the circu
ferential direction decays as the cylinder approaches an axis
metric, thermal steady state.

Figure 5 shows the surface hoop stress history in three circ
ferential directions. Since the maximum hoop stress occurs a
ther the cylinder’s inner or outer surface, the hoop stress for
intermediate radial position again falls into a horn-shape evo
tion. As the spatial and temporal temperature gradients decay
hoop stresses converge asymptotically to a steady-state valu

Figure 6 illustrates the transient hoop-stress variation ar
5a,b in the circumferential direction. As expected, the numeri
results show that att50 the maximum tensile hoop stress occu
at r 5b, u5p/2 and the maximum compressive hoop stress
curs atr 5a, u5p/4. Meanwhile, it is informative to note that th
hoop stress is tensile and compressive at the outer and inner
faces, respectively.
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Figure 7 depicts the transient hoop stress in the radial direc
for u52p/2,p/2. The maximum compressive hoop stress~r
5a, u5p/2! decreases to two-thirds its initial value byt
50.36; in the same period, the maximum tensile hoop stres~r
5b, u52p/2! drops to less than half its original value. Often,
composite cylinder’s tensile strength is significantly higher th
its compressive strength due to defects~e.g., residual stresses
microcracks, fiber waveness! generated during the manufacturin
process. As a result, when considering the failure of a compo
cylinder under thermal loading, both the magnitude and sign
important.

Figure 8 shows the transient radial stress along the radial di
tion atu52p/2,p/2. The compressive radial stress suggests t
interlaminar delaminations and/or microcracks in the fiber dir
tion will not open further under this particular thermal loading

Figure 9 displays the transient shear stress in the radial di
tion at u50,p. Due to the symmetric temperature distributio
with respect to theY-axis, the shear stress is necessarily zero
u52p/2,p/2. As the resulting shear stress is antisymmetric,
shear stress for any intermediate radial position is bounded by
envelope spanning fromu50,p. Clearly, the shear stress event
ally diminishes ast increases, which can be seen from the te
perature distribution discussed earlier in Fig. 4. In the pres
problem, the maximum shear stress is only about 3% of the m
mum hoop stress; however, thermal stresses may initiate failur
Fig. 5 Surface hoop-stress history for uÄÀpÕ2,0,pÕ2
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Fig. 6 Transient, surface hoop-stress distribution in the circumferential direction

Fig. 7 Transient, hoop-stress distribution in the radial direction for uÄÀpÕ2,pÕ2

Fig. 8 Transient, radial-stress distribution in the radial direction for uÄÀpÕ2,pÕ2
Journal of Applied Mechanics SEPTEMBER 2002, Vol. 69 Õ 639



Fig. 9 Transient, shear-stress distribution in the radial direction for uÄ0,p
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the action of shear stresses—not hoop stresses—due to the
low, interlaminar shear strengths in composite structures.

Conclusions
This paper presents a closed-form analytical solution for

transient, plane thermal stress analysis of a linearly elastic, ho
geneously orthotropic hollow cylinder subjected to an arbitra
asymmetric temperature distribution. The hoop, radial, and sh
stresses, due to the transient arbitrary temperature distribution
expressed explicitly in terms of the scalar temperature field.
current analysis is compact, straightforward; it does not req
complicated mathematical operations using the Hankel asymp
expansions of the Bessel functions to tackle the difficulty cau
by the limiting cases of extremely short and long times~@6,7#!.

The current thermoelastic stress analysis assumes that the
inder’s mechanical and thermal properties are homogeneously
tributed; however, using perturbation techniques, this solution
be directly extended to include weakly inhomogeneously ortho
pic cylinders. Moreover, using the viscoelastic Corresponde
Principle, the thermoelastic solution also immediately yields
thermoviscoelastic solution for thermorheologically simple v
coelastic materials.

Representative numerical results for the thermally driven ho
radial, and shear stresses in a hollow hoop-wound glass/ep
cylinder reveal that

• asymmetric spatial and temporal thermal gradients induce
tentially debilitating shear stresses, which can initiate intra or
terlaminar failure in orthotropic laminated materials—prior to t
onset of tensile/compressive failure.

• the thermal stress distributions are greatly affected by
thermal boundary~and initial! conditions. In the example, the cy
inder’s thermal boundary conditions—and hence steady sta
were homogenous and independent of the circumferential p
tion; as a direct result, the cylinder had only a transient sh
stress, which decayed to zero with the thermal gradients. H
ever, spatially varying thermal boundary conditions imposed o
homogeneously orthotropic hollow cylinder can induce nonz
shear stresses, which will not necessarily decay to zero with
thermal gradients.

• for homogeneously orthotropic hollow cylinders exposed
asymmetric temperature gradients, but axisymmetric ther
boundary conditions and no internal heating, the asymmetric t
mal stress analysis exhibits maximum stress envelopes, w
provide useful information on how the maximum thermal stres
evolve during the transient state.
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1 Introduction
Concentrated suspensions of small particles in various matr

including polymer melts are known to exhibit a threshold or yie
stress, i.e., a stress below which no flow occurs. This behavio
well documented in shear flow experiments, e.g., Chapman
Lee @1#, Vinogradov et al.@2#, Suetsugu and White@3#, and Os-
anaiye et al.@4#. Evidence of such behavior also exists in uniax
elongational flow, cf., Toki and White@5#, Montes and White@6#,
Suetsugu and White@3#, and Kim and White@7#.

There is a long history of effort to develop constitutive equ
tions for particle filled suspensions. A simple shear model o
fluid that is rigid below a threshold stress and exhibits linear v
cous flow above was proposed by Bingham@8#. Multiaxial exten-
sions of Bingham’s model were made over the following tw
decades by Hohenemser and Prager@9# and Oldroyd@10#. Prager
@11# in his monograph examines and generalizes this earlier w
and makes application to some simple classical flows. More
cently, White@12# and White and Lobe@13# developed a multi-
axial plastic/viscoelastic model. In each of the multiaxial mod
cited, the features of plasticity are based on the von Mises (J2)
yield criterion of isotropic perfectly plastic solids.

The investigations addressed above are directed to suspen
where the effect of the dispersed particles results in viscopla
behavior that is essentially isotropic. However, fibrous or disk-l
~talc, mica, etc.! particles used as fillers in some industrial com
pounds often result in anisotropy. It is observed that such parti
tend to orient during flow or processing, resulting in mater
properties that have a preferential direction and are thus tr
versely isotropic. Ericksen@14# was the first to develop a theory o
anisotropic fluids. A theory of transversely isotropic plast
viscoelastic fluids applicable to polymer melts has been develo
by White and Suh@15#. Their model makes use of an anisotrop
yield criterion due to Hill@16–18#. A recent paper by White et al
@19# considers an alternate model of a transversely isotro
plastic-viscoelastic fluid in which the anisotropic yield criterion
Hill is replaced by one based on the theory of tensorial invaria
following Spencer@20–23#.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
3, 2000; final revision, December 14, 2001. Associate Editor: D. A. Siginer. Dis
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Department of Mechanical and Environmental Engineering, University
California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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In this paper, we propose a constitutive theory of a transvers
isotropic viscoplastic fluid based on a potential function that pla
the dual role of a threshold function and a viscous flow potent
The potential implies a form of path-independence and limits
representation to fluids whose viscosity is independent of de
mation history~e.g., excluding thixotropy!. We develop the trans-
versely isotropic constitutive theory and examine some limit
cases. Application is made to PS polymer melts filled with 20%
and 40%V of talc particles.

2 Constitutive Model
Consider a non-Newtonian viscous material~fluid! under iso-

thermal conditions represented by

V5
]V

]s
(1)

in which V5the rate of deformation,s5the Cauchy stress, an
V5a viscous dissipation potential function. Equation~1! ex-
presses normality of the rate of deformationV to surfaces of
V(s)5const. in a combined rate of deformation /stress space,
Appendix A. Convexity of the surfacesV(s)5const. in that
space ensures that the representation is dissipative.

For an anisotropic fluidV must depend not only on stress b
also on the local material orientation, cf., Appendix B. In the ca
of transverse isotropy, the local preferred orientation can be d
ignated by a unit vectord. As the sense ofd has no special
significance, we take the dyadic self product ofd defining a sym-
metric orientation tensorD5d^ d with trD51. Assuming the
fluid response to be independent of hydrostatic stress, we take
stress dependence on the deviatoric stresss. Thus, the viscous
potentialV(s,D) depends on two symmetric, second rank tenso

Following Spencer@20–23#, objectivity of ~1! requires thatV
depends on an irreducible integrity basis comprised of invaria
and joint invariants of its argumentss and D. Included in the
integrity basis is the subset of quadratic invariants:

J25
1

2
trs2

I 0
25~ trDs!2 (2)

I 5trDs2

Thus, we may take

V~J2 ,I 0
2 ,I !. (3)

ry
us-
ing,
of
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Instead, we are guided by Lance and Robinson@24# and Rob-
inson and Duffy@25# and make use of a physically based set
invariants that are combinations of~2!, i.e.,

I 15J22I 1
1

4
I 0

2

I 25I 2I 0
2 (4)

I 35S 3

2
I 0D 2

and we take

V~ I 1 ,I 2 ,I 3!. (5)

I 1 in ~4! specifies the square of the maximum transverse sh
stress at a material~fluid! element, i.e., the maximum shear stre
on planes containing the local preferential directiond and perpen-
dicular to it. I 2 is the square of the maximum longitudinal she
stress on planes containingd and parallel tod. I 3 gives the square
of the normal stress on a plane perpendicular tod, i.e., on the
plane of isotropy.

We introduce an intermediate functionF that incorporates a
polynomial of the invariants~4!, i.e.,

V~F! (6)

F5I 11a2I 21b2I 3 (7)

in which a.0 andb.0 are material constants. We note from~7!
that F is a quadratic, convex function of stress. Similarly,V is
convex in stress, ensuring that the representation is dissipa
~cf., Appendix A!.

Using ~1! and ~6! we write

V5
]V

]s
5

dV

dF

]F

]s
(8)

and calculate, from~4! and ~7!

]F

]s
5G5s1~a221!~sD1Ds22I 0D!1~3b221!

I 0

2
~3D2I !.

(9)

It is readily shown from~9! that tr G50. Then, from~8! we have
trV50 indicating incompressibility.

We need to specify the function dV/dF in ~8! for a particular
fluid. Following Hohenemser and Prager@9# and Prager@11# we
adopt a simple power-law form

dV

dF
5

Fn

2m
where F512

K

AF
(10)

in which n>1, m andK are material constants.
As our interest is in a representation of a viscoplastic mate

that is essentially a viscous fluid but can sustain shear stress
state of rest, we state the constitutive theory in the form~again
guided by Hohenemser and Prager@9# and Prager@11#!:

2mV5H 0 for F,0

FnG for F>0
(11)

F512
K

AF
F5I 11a2I 21b2I 3

G5s1~a221!~sD1Ds22I 0D!1~3b221!
I 0

2
~3D2I !

(12)

where~7!, ~9!, and~10! are repeated for convenience.
642 Õ Vol. 69, SEPTEMBER 2002
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This completes the representation of a transversely isotro
non-Newtonian visco-plastic fluid. Its full specification include
~2!, ~4!, and~9!–~12!. Application to a particular fluid requires th
determination of the material parameters

K,m,n,a, and b. (13)

K has units of stress,m has the units of viscosity~stress-time!, and
the remaining parameters are dimensionless.

The second Eq.~11! can be transposed as

2m̄V5G (14)

where

m̄5mF2n (15)

is a transversely isotropic viscosity. We note that~cf., Appendix
A!. V5const. surfaces in stress space are surfaces ofF5const.,
and by~15!, m̄5const. In particular, the threshold surfaceF50
corresponds tom̄5`.

The anisotropy parametersa andb and the threshold stressK
in ~11! and~12! are material constants relating to a fixed degree
anisotropy and stress threshold. This is consistent with stea
state flow where the oriented filler particles have fully align
with the flow ~as the talc particles in the subsequent applicatio!.
Under transient conditions where the filler particles~fibers! may
be initially randomly orientated and convect with the flow, th
scalarsa, b, and K need to be considered state variables ea
having an evolutionary equation coupled with the flow equatio
for example with formsȧ(s,D,V), ḃ(s,D,V), and K̇(s,D,V),
cf., Poitou, Chinesta, and Bernier@26# and Advani@27#.

Definition of the evolutionary equations is left as a topic
future research.

3 Some Limiting Conditions
The second Eq.~11! or ~14! can be written as

G5F ~2m!1/n1
K

AF
S tr G2

trV2D 1/2nG n

V. (16)

Equation~16!, of course, holds only if the rate of deformation
nonzero.

Taking the trace of each side of~16! multiplied by itself gives

tr G25F ~2m!1/n1
K

AF
S tr G2

trV2D 1/2nG 2n

trV2. (17)

For m→0 in ~17! there results

K2n

Fn 51 or F5K2. (18)

Equation ~18! serves as a transversely isotropic yield conditi
that is satisfied whenever the rate of deformation is not zero.

Under the same limitm→0, ~16! reduces to

G5Atr G2

trV2 V or V5lG; l.0. (19)

The yield condition~18! and the flow law~19! are supplemented
by the condition

F,K2 (20)

corresponding to zero deformation rate. Thus, the viscopla
constitutive model expressed in~9!–~12! reduces to a transversel
isotropic perfect plasticity model~18!–~20! in the limit of zero
viscosity m→0. This anisotropic plasticity model was employe
earlier in Robinson and Pastor@28#.

Further, we consider another limiting case, i.e., the isotro
limit a→1, b→1/) with n51. Under this limit~2!, ~4!, ~7!, and
~9! give F5 1/2trs25J2 andG5s and the viscoplasticity mode
~9!–~12! becomes
Transactions of the ASME
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2mV5H 0 for F,0

Fs for F>0
(21)

F512
K

AJ2

(22)

which is recognized as the multiaxial generalization of Bingham
model proposed by Hohenemser and Prager@9# and Prager@11#.

The isotropic limit of the anisotropic perfect plasticity mod
~18!–~20! is

J25K2 (23)

replacing the yield condition~18!. The flow law~19! becomes

V5ls (24)

and ~20! is replaced by

J2,K2. (25)

The isotropic perfect plasticity model specified in~23!–~25! is
that first considered by von Mises@29#.

4 Response to Simple Stress States

Natural Stress States. We now calculate the response of th
viscoplastic model~9!–~12! under some simple stress states,
ferred to as ‘‘natural’’ stress states for the model. These are il
trated in Fig. 1. We choose coordinate directions as shown, w
the preferential direction along thex1-axis. Thus, the orientation
tensorD has componentsD1151 with all others zero.

Transverse shear~TS! is depicted in Fig. 1~a!. The relevant
stress components ares235s325t, all others are zero. Calculat
ing the pertinent invariants using~2! and~4! and substitution into
~7! and ~9! yields F5t2 andG235t. At the thresholdF50, we
have

t56K. (26)

Thus, the material parameterK introduced in~10! represents the
threshold stress in transverse shear~TS!.

Using ~11! and denotingġ23[2V23, we obtain an expression
for transverse shear~TS! flow:

ġ235
1

m S 12
K

utu D
n

t utu>K. (27)

Next, we consider longitudinal shear~LS! as illustrated in Fig.
1~b!. Now the relevant stress components ares135s315t, all
others zero. Again, calculating the pertinent invariants using~2!
and ~4! and substitution into~7! and ~9! yields F5a2t2 and
G135a2t. At the thresholdF50

t56
K

a
56KL (28)

whereKL is the threshold stress in longitudinal shear and

a5
K

KL
(29)
hanics
’s

l

e
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defines the material parametera.
Using ~11! and takingġ13[2V13, we obtain the longitudinal

shear~LS! flow

ġ135
a2

m S 12
KL

utu D
n

t utu>KL . (30)

Now we consider a third simple stress state, i.e., longitudi
normal~LN! stress as depicted in Fig. 1~c!. Here, the single non-
zero stress component iss115s. Using ~2!, ~4!, ~7!, and ~9! we
get F5b2s2 and G1152b2s. At the threshold stressF50 we
have

s56
K

b
56YL (31)

whereYL is the threshold under longitudinal normal~LN! stress
and

b5
K

YL
(32)

defines the parameterb.
From ~11! with «̇11[V11 we have elongational~LN! flow

«̇115
b2

m S 12
YL

usu D
n

s usu>YL . (33)

The fourth natural stress state illustrated in Fig. 1~d! is that of
transverse normal~TN! stress. Here, the only nonzero stress co
ponent iss335s. Again from ~2!, ~4!, ~7!, and ~9! we haveF
5@(11b2)/4#s2 and G335@(11b2)/2#s. At the thresholdF
50

s56A4/~11b2!K56YT (34)

or

K

YT
5A~11b2!/4. (35)

Again, from ~11! with «̇33[V33, we get an expression for th
transverse normal~TN! flow

«̇335
~11b2!/4

m S 12
YT

usu D
n

s usu>YT . (36)

Comparing~32! and ~35!, we observe that with the transvers
shear thresholdK known, determination of eitherYL or YT pro-
vides the parameterb. Evidently,YL andYT are not independent
This is because the theory developed here does not include the
integrity basis of invariants for transverse isotropy. This situat
is analogous to that of the isotropic von Mises (J2) theory of
perfect plasticity~23!–~25!, which is similarly based on an incom
plete basis of invariants. There, with the shear yield stressK
known, the uniaxial yieldY is not independent but determined a
Y5)K.

Combined Normal and Shear Stress. Before specifying a
characterization procedure based on the natural stress state
consider the response under combined normal and shear stre
SEPTEMBER 2002, Vol. 69 Õ 643
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indicated in Fig. 2. In terms of the natural stress states the s
state of Fig. 2 is combined~LS! and~TN!. The preferential direc-
tion is again taken along thex1-coordinate direction; thus, again
the orientation tensor has componentsD1151 with all others zero.
The nonzero stress components ares135s315t ands335s.

Calculating the pertinent invariants using~2! and ~4! and sub-
stitution into ~7! yields

Fig. 2 Combined shear stress „LS… and normal stress „TN…
644 Õ Vol. 69, SEPTEMBER 2002
ress

,

F5
11b2

4
s21a2t2. (37)

At the thresholdF50, using ~29! and ~35! and normalizing by
KL , we write

KL
2

YT
2 S s

KL
D 2

1S t

KL
D 2

51. (38)

The threshold curve~surface! ~38! is illustrated in thes/KL ,
t/KL space of Fig. 3. Varying degrees of anisotropy are speci
by values ofKL /YT . Evidently, the shape of the threshold su
faces directly reflect the degree of anisotropy. The dotted cu
relates to isotropy withKL /YT51/)50.577. That labeled 0.474
relates to a subsequent application to a filled PS/TALC 40V
melt.

Figure 4 shows the same stress space and includes the thre
surface designated asKL /YT50.474 in Fig. 3. Also shown is a
family of surfaces F5const. ~or equivalently, F5const., m̄
5const.!. Stress points inside the thresholdF50 (m̄5`), i.e., in
Fig. 3 Threshold curves in normalized sÕK L , tÕK L space. PS ÕTALC 40V%–0.474,
Isotropic–0.577.

Fig. 4 Family of curves FÄconst. „FÄconst., m̄Äconst. … for PS ÕTalc 40V%.
Illustrates normality.
Transactions of the ASME
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the shaded region, do not cause viscous flow; stress points ou
F50 (m̄5`) produce flow with viscosity equal to the value o
m̄5const. passing through that stress point.

Flow under the combineds,t stress is calculated using~11!.
Denoting as earlierġ13[2V13 and «̇33[V33 and using~37! we
have

ġ135
a2

m S 12
K

AF
D n

t F>K2 (39)

for the shear flow, and

«̇335
~11b2!/4

m S 12
K

AF
D n

s F>K2 (40)

for the elongational flow.
Computing the ratio«̇33/ġ13,

«̇33

ġ13
5S KL

YT
D 2 s

t
5

]F/]s

]F/]t
, (41)

we see that it is equal to the ratio of components of the grad
vector ~Fig. 4! computed using~37!. The gradient vector is di-
rected normal to theF5const. curve passing through a particul
stress point. This further illustrates the concept of normality
discussed in Appendix A. Clearly, the nature of the flow is infl
enced by the shapes of theF5const. ~F5const., m̄5const.!
curves, which, in turn, are dictated by the degree of anisotrop

5 CharacterizationÕDetermination of Material
Parameters

We now outline a characterization procedure for representin
particular fluid, i.e., a procedure for determining the material
rameters~13!. Hypothetically, experiments are conducted und
the ‘‘natural’’ stress states~Fig. 1!; the parameters are determine
by correlating calculations based on results of the previous sec
and the measured responses. If we assume that the indepe
threshold stressesK,KL andYL ~or YT! are measurable,a andb
are then determined through~29! and ~32! ~or ~35!!. Further, if
shear and/or elongational flow data are available from exp
ments under any of the natural stress states~TS!, ~LS!, ~LN!, or
~TN!, these data can be correlated with the respective predict
~27!, ~30!, ~33!, or ~36! to determine least-squares fits of the flo
parametersm andn. In principle, this completes the specificatio
of the material parameters~13!, i.e., K,m,n,a andb.

In practice, not all experiments relating to the ‘‘natural’’ stre
states can be performed. Rheological properties~yield and flow!
are typically measured using rheometers, such as a sandwich
ometer for shear properties and a uniaxial elongational rheom
for elongational properties, cf., Kim and White@7#. Observe the
two fluid elements of Figs. 5~a! and 5~b! corresponding to two
types and configurations of filler particles under flow. The flo
indicated in Fig. 5 is shear flow relating to a shear rheometer
extensional flow for an elongational rheometer The elemen
Fig. 5~a! shows disk-like particles having their disk normals o
ented at right angles to the flow. Figure 5~b! shows elongated

Fig. 5 Fluid elements showing preferential and flow direc-
tions; „a… disk-like filler particles, „b… elongated fiber filler par-
ticles
Journal of Applied Mechanics
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fibrous particles oriented with the flow direction. The mater
element of Fig. 5~a! is representative of the talc-filled PS mel
considered in the next section.

Shear flow of the element in Fig. 5~a! is identified as
longitudinal shear~LS! in accordance with the previous sectio
~Fig. 1~b!!. The corresponding threshold shear stress isKL . Ex-
tensional flow of the same element is recognized as~TN! flow
~Fig. 1~d!! with threshold stressYT . These flow and yield feature
are directly measurable using shear and elongational rheom
but do not allow a complete specification of the material para
eters~13!. Additional measurements are necessary for a full spe
fication, e.g., measurments of transverse shear flow~TS! and/or
the threshold stressK. However, these are not readily obtained f
the class of fluids of interest.

A partial characterization useful in processing applications
found for talc-filled PS melts in the following section. This
based on rheometric measurments of Kim and White@7#.

6 Application to Talc-Filled Polymer Melts
Application of the model is made to polymer melts containi

disk-like talc particles~Fig. 5(a)!. We suppose that a fluid ele
ment contains a large number of these particles oriented with t
disk normals at right angles to the flow direction, cf., White a
Suh @15# and White et al.@19#.

As indicated in Fig. 5~a! we adopt a coordinate system with th
axis x1 aligned withd, the local preferential direction. As earlie
the orientation tensor has the only nonzero componentD1151.
The flow direction isx3 .

The polymer melts of interest are PS/TALC 20 V% and P
TALC 40 V % at 200°C. Figures 6 and 7 show experimental d
~symbols! taken from Kim and White@7# and plotted as viscosity
versus stress. As discussed earlier, the stress state under w
these flow measurements were made is that of longitudinal s
~LS! as in Fig. 1~b!. The measured longitudinal threshold she
stressesKL are indicated in Figs. 6 and 7~and Table 1! as KL

20

'245 Pa for 20 V% TALC andKL
40'5120 Pa for 40 V % TALC.

Fig. 6 Apparent viscosity „Pa-S… versus stress „Pa… for PS Õ
TALC 20% „symbols …. Correlation of shear flow „LS…–„solid
curve …. Prediction of elongational flow „TN…–„dashed curve ….
SEPTEMBER 2002, Vol. 69 Õ 645
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As the flow data relates to longitudinal shear~LS!, it should
correlate with the flow prediction~30!. However, first we rewrite
~30! in terms of apparent shear viscositynt , i.e.,

nt5
t

ġ13
5m8S 12

KL

utu D
2n

utu>KL (42)

where we have denotedm85m/a2. With KL known and flow data
recorded in the form of data pairs (t,nt), best fits of the param-
etersm8 andn can be found. This has been done for PS/TALC
V% and PS/TALC 40 V % using curve fitting software in Math
ematica. The results are listed in the following table.

The threshold stressesKL and YT have the units Pa,m8 has
units Pa x S. The solid curves in Figs. 6 and 7 are curve fits1, i.e.,
plots of ~42! with the optimal values ofm8 andn from Table 1.

Although elongational flow data~TN! are not available in Kim
and White@7#, measurements of the normal stress thresholdsYT
were made using an elongational rheometer. These are indic
in Figs. 6 and 7 ~and Table 1! as YT

20'489 Pa andYT
40

'10800 Pa.
As discussed in the previous section, data includingKL , YT and

~LS! flow data providing optimal fits ofn andm85m/a2 are not
sufficient in themselves for a complete characterization of
model. WithKL andYT known, we write from~29! and ~35!

KL

YT
5A11b2

4a2 . (43)

If, in addition, a measurement of the transverse shear threshoK
were possible,a would then be known from~29! andb from ~43!.
Finally, with m5m8a2 a complete specification of the materi
parameters would be realized.

1Observe that the correlations in Figs. 6 and 7 are good over the limited s
range considered~i.e., one or two orders of magnitude above the threshold stre!.
Practically, this range of stress is sufficient in most polymer processing calculat
However, we observe from~42!, or more generally from~11! and ~12!, that in the
limit of large stress, the proposed model predicts Newtonian response. For ap
tions that require modeling over a large stress range and the behavior is
Newtonian at high stress, the form ofF in ~12! may not be appropriate and woul
need to be replaced by a more suitable form.

Fig. 7 Apparent viscosity „Pa-S… versus stress „Pa… for PS Õ
TALC 40% „symbols …. Correlation of shear flow „LS…–„solid
curve …. Prediction of elongational flow „TN…–„dashed curve ….
646 Õ Vol. 69, SEPTEMBER 2002
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In the absence of additional data for a complete character
tion, nevertheless we can predict the elongational~TN! flow re-
sponse. Using~36! and ~43! we write

ns5
s

«̇33
5

m8

~KL /YT!2 S 12
YT

usu D
2n

usu>YT (44)

for the apparent elongational viscosityns .
Predictions using~44! for PS/TALC 20 V% and PS/TALC 40 V

% are plotted as dashed lines in Figs. 6 and 7. If elongatio
viscosity data (s,ns) for these melts become available, a com
parison with these predictions would furnish a definitive asse
ment of the proposed model.

Recall that the predicted threshold curve for PS/TALC 40V
under combineds, t stress was shown in the normalized stre
space (s/KL ,t/KL) of Fig. 3. It is identified there asKL /YT
50.474~cf., Table 1!. The comparable threshold for an isotrop
fluid is also illustrated in Fig. 3; it is labeled 0.577.

The same threshold curve for PS/TALC 40V% is included
Fig. 4, labeledF50 (m̄5`). The model predicts no viscous flow
for PS/TALC 40V% associated with stress pointss,t inside this
threshold curve~shaded region!; stress points outside cause flo
with finite viscosity, corresponding to the calculatedm̄5const.
curve passing through the given stress point. In particular,
ratio of elongational flow rate«̇33 to shear flow rateġ13 for PS/
TALC 40V% under the combined stresss,t is calculated by~41!
as

«̇33

ġ13
'0.225

s

t
. (45)

This ratio iss/3t for an isotropic fluid.

7 Summary and Conclusions
A constitutive theory is proposed for a transversely isotrop

viscoplastic~Bingham! fluid. The model treats threshold and flo
characteristics as having essentially the same physical origin,
the impedance of molecular reptation by the presence of sm
suspended, oriented filler particles. The theory incorporates a
tential function serving the dual role of a threshold~yield! func-
tion and a viscous flow potential. The arguments of the poten
consist of a subset of the integrity basis of invariants for tra
verse isotropy; the resulting representation is objective and d
pative.

The anisotropy parametersa andb and the threshold stressK
are considered material constants in the proposed model c
sponding to a fixed degree of anisotropy and stress threshold.
is consistent with steady-state flow as in the present applicatio
talc-filled polymers where the oriented filler particles have fu
aligned with the flow. In transient flow where the filler particle
may be initially randomly orientated and convect with the flo
the scalarsa, b, andK must be considered state variables, ea
with a specified evolutionary equation that is coupled with t
flow field equations, cf., Poitou, Chinesta, and Bernier@26# and
Advani @27#. Definition of the equations of evolution is left as
topic of future research.

The proposed viscoplasticity model reduces to a transver
isotropic perfect plasticity model in the limit of zero viscosity. I
the limit of isotropy the proposed theory reduces to the multiax
generalization of Bingham’s theory by Hohenemser and Prag

ress
ss
ons.

lica-
non-

Table 1

KL YT m8 n KL /YT

PS/TALC 20 V% 245 489 8.303104 2.15 0.501
PS/TALC 40 V% 5120 10 800 2.983104 1.98 0.474
Transactions of the ASME
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A simple characterization procedure is outlined based on ca
lated and measured responses under fundamental~natural! states
of stress. Although experiments under all the natural stress s
are not always attainable, the stated procedure serves as a f
work for determining the material parameters.

Application of the model is made to PS polymer melts conta
ing disk-like talc particles of 20 V% and 40V% at 200°C. Th
data set for each melt consists of measured threshold stresseKL
andYT and shear flow measurements corresponding to the na
stress state of longitudinal shear~LS!. These data do not constitut
a complete set for full characterization. Nevertheless, good co
lation of the model with the~LS! data is obtained over one or tw
decades of stress above the thresholdKL . The correlation with the
~LS! data and the measurement ofYT allows a prediction of trans-
verse elongational flow~TN!. If ~TN! flow data were to become
available for these melts, a comparison with the prediction wo
provide a definitive assessment of the model.

It is noted that the present model shows Newtonian respo
asymptotically as the stress becomes large relative to the s
threshold. Application to transversely isotropic fluids for whi
the flow is non-Newtonian at high stress can be represented b
same theoretical framework with different choices of the fun
tional forms, cf., Perzyna@30#.

The proposed constitutive theory is limited to isothermal co
ditions and is not applicable to hereditary fluids whose viscosit
dependent on deformation history~e.g., thixotropic fluids!. Exten-
sion to nonisothermal conditions can be achieved by appropria
including Arrhenius~or WLF! forms and conducting experimen
under the natural stress states at other temperatures. Extens
hereditary fluids is left for future study.

Appendix A
Figure 8 shows a superimposed~six-dimensional! stresss and

rate of deformationV space. The state of stress and rate of de
mation at a fluid element are represented as points~or vectors! in
this space. We see from~6!, ~10!, and ~15! that the~hyper! sur-
facesV(s)5const. in stress space are equivalently surfaces
F(s)5const.,F(s)5const. andm̄(s)5const. The latter are sur
faces of constant viscosity~15!.

From~10! and~15! we identify the surfaceF50 (m̄5`) as the
threshold~or yield! surface. Stress points inside this surface~in
the shaded area of Fig. 8! produce no viscous flow. Stress poin
outside the threshold cause flow with finite viscosity.

From geometry, we recognize]V/]s as a gradient vector. At a
stress points on the surfaceV(s)5const.~Fig. 8!, the associated
gradient vector lies along the outward normal to that surface.
cording to~1!, the rate of deformationV coincides with the gra-
dient vector]V/]s and is thus similarly directed~in the com-
binedV, s space! normal toV(s)5const., cf., Drucker@31,32#.
This concept of normality is a principal feature in classical pl
ticity theory. Evidently, the rate of deformation produced by

Fig. 8 Convex VÄconst. surfaces in s, V space. Threshold
surface FÄ0 „m̄Ä`…. Illustrates normality.
Journal of Applied Mechanics
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given stress depends critically on the shape of theV5const. (F
5const.) surfaces. In turn, these shapes are strongly depende
the nature and degree of anisotropy, cf., Figs. 3 and 4.

We further observe from Fig. 8 that the surfacesV5const.
enclose the origin of the stress space and, provided they are
vex, the scalar product

sV>0 (A1)

i.e., the viscous dissipation rate is non-negative.
As always, the existence of a potential as in~1! implies a form

of path independence. Here, this is manifest in the calculation
complementary viscous dissipation over a generic path in st
space fromsA to sB, i.e.,

E
sA

sB

Vds5V~sB!2V~sA! (A2)

~A2! shows independence of path betweensA andsB. Such path
independence excludes application of the present developme
thixotropic fluids, or more generally, to fluids whose viscosity
dependent on deformation history.

For incremental changes ins and V, we have from~1!, in
component form

dVi j 5
]2V

]s i j ]skl
dskl5Li jkl dskl (A3)

with

Li jkl 5Lkli j (A4)

relating to Onsager’s Principle for a Newtonian fluid, cf., Druck
@32#, Ziegler @33#.

Appendix B
The general~component! form of ~1! for an anisotropic viscous

material~fluid! is

Vi j 5Mi jkl

]V

]skl
. (B1)

Following Betten@34#, who addresses the plastic behavior of a
isotropic solids, we express~B1! as

Vi j 5
]V

]s i j
1jmi jkl

]V

]Dkl
(B2)

for a transversely isotropic fluid with a viscous potentialV(s,D).
Betten@34# identifies the second term in~B2! as being of second-
order relating to the plastic potential of an anisotropic plas
solid; he derives its specific form using representation theory
tensor functions. As our objective is to formulate a simple con
tutive law, applicable in processing calculations, we ignore
second term in~B2!, arguing that it is likewise of second order fo
the viscous potential of a transversely isotropic fluid. Thus,
contend that~1! provides a first-order representation of a tran
versely isotropic fluid with viscous potentialV(s,D).

The relative importance of the second term in~B2! for a trans-
versely isotropic viscous material~fluid! must ultimately be deter-
mined through experiment, e.g., through experiments mapp
surfacesV5const., measuring the appropriate components
flow rate and thereby assessing the concept of normality~cf., Ap-
pendix A!. Experiments of this type have been conducted
transversely isotropic viscous~creeping! solids in the form of re-
inforced thin-walled polymeric tubes, cf., Robinson, Biniend
and Ruggles@35#. The results support the concept of normali
and suggest that the second term in~B2! is negligible for a trans-
versely isotropic viscous material.
SEPTEMBER 2002, Vol. 69 Õ 647
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The Proportional-Damping Matrix
of Arbitrarily Damped Linear
Mechanical Systems
The vibration of linear mechanical systems with arbitrary damping is known to p
challenging problems to the analyst, for these systems cannot be analyzed with the
niques pertaining to their undamped counterparts. It is also known that a class of dam
systems, called proportionally damped, can be analyzed with the same techniques,
mimic faithfully those of single-degree-of-freedom systems. For this reason, in man
stances the system at hand is assumed to be proportionally damped. Neverthele
assumption is difficult to justify on physical grounds in many practical applications. W
this assumption brings about is a damping matrix that admits a simultaneous diag
ization with the stiffness matrix. Proposed in this paper is a decomposition of the dam
matrix of an arbitrarily damped system allowing the extraction of the proportiona
damped component, which, moreover, approximates optimally the original damping
trix in the least-square sense. Finally, we show with examples that conclusions d
from the proportionally damped approximation of an arbitrarily damped system can
dangerously misleading.@DOI: 10.1115/1.1483832#
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1 Introduction
While the theory of linear systems with constant coefficien

termedlinear time-invariant systems, is well established, its ap
plication to the analysis and identification of mechanical syste
with arbitrary damping is still a subject of research~@1–6#!. In-
deed, the modal analysis of linear, constant-coefficient mechan
systems has focused on systems withproportional damping,
which allows the simultaneous diagonalization of the damp
and the stiffness matrices. Such a diagonalization, in turn, lead
a decoupling of the system under study into a set of uncoup
single-degree-of-freedom systems, thereby allowing for th
study with the classical techniques developed for these syst
To be sure, systems with arbitrary damping can be analy
within the framework of state-variable models~@7#!, but these
models lack the transparency of the usual second-order mo
and hence, have not found their way into the daily engineer
practice.

Proportional damping occurs naturally in the discretization
linear viscoelastic structures, but seldom occurs in the presenc
lumped damping. The need to optimize structures and mach
that comprise damping elements such as shock absorbers ca
a thorough analysis of systems with arbitrary damping. The
thors proposed recently a novel approach along these lines~@8#!.

Engineers, however, feel more comfortable when working w
proportionally damped systems, and hence, resort to a propor
ally damped model whenever the need arises. Nevertheless, g
lines as to how to derive a proportionally damped model fo
system that is known to have nonproportional damping are
fully developed, although some progress has been reported~@6,9#!.
The subject of this paper is a procedure whereby the proporti
component of an arbitrary damping matrix is computed, that b
approximates the latter in the least-square sense. The meth
robust, for it isdirect, as opposed toiterative, while preserving the

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dece
ber 17, 1999; final revision, February 28, 2002. Associate Editor: V. K. Kinra. D
cussion on the paper should be addressed to the Editor, Professor Robe
McMeeking, Department of Mechanical and Environmental Engineering, Univer
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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numerical conditioning of the matrices involved. Moreover, t
method is applicable ton-degree-of-freedom systems, for any in
tegern.

A word of caution is in order: Results drawn from th
proportional-damping approximation of an arbitrarily damped s
tem can be dangerously misleading, even in the presence o
best approximation. We illustrate this claim with an example.

2 Nomenclature and Definitions
The mathematical model of linear, time-invariant mechani

systems takes the form

Mẍ1Cẋ1Kx5f~ t !, x~0!5x0 , ẋ~0!5v0 , (1)

in which
M : n3n positive-definitemassmatrix;
C : n3n positive-semidefinitedampingmatrix;
K : n3n positive-semidefinitestiffnessmatrix;
x(t) : n-dimensional vector of generalized coordinates;
f(t) : n-dimensional vector of generalized external forces.

It is known that proportional damping occurs when the dam
ing matrix is a linear combination of the mass and stiffness m
trices. A commonly accepted form of the damping matrixCp of a
proportionally damped system is, thus,

Cp5aM1bK (2)

wherea andb are real parameters that are chosen by the ana
In formulating the eigenvalue problem of the system~1!, both
sides of the governing equation are premultiplied byM21, which
is also done with Eq.~2!, to yield

M21Cp5a11bM21K , (3)

thereby making apparent that the foregoing damping leads
linear combination of what is known as thedynamic matrix
M21K and the n3n identity matrix 1. Therefore, matrices
M21Cp and M21K share the same set of eigenvectors, wh
explains why, under form~2!, the mathematical model at hand ca
be decoupled, i.e., transformed into a system ofn uncoupled
second-order ordinary differential equations. However, notice
form ~2! is only one instance of a damping matrix leading
proportional damping. Indeed, adding a linear combination
powers of the dynamic matrix to the right-hand side of Eq.~3!

-
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yields a new matrix that still shares the same eigenvectors
the dynamic matrix. Such generalizations of theCp matrix have
been proposed~@9#!.

Now, sinceM is positive-definite, it admits the factoring

M5NTN (4)

whereN is a nonsingular matrix. One candidate to defineN can be
derived from the Cholesky decomposition~@10#! of M , but other
means exist, for example,any square root ofM can also work.

Upon introduction of the above factoring in the mathemati
model, Eq.~1!, we can transform this model into a form in whic
the coefficient of the highest-order derivative is then3n identity
matrix 1, namely,

ÿ1Dẏ1V2y5g~ t !, y~0!5y05Nx0 , ẏ~0!5w05Nv0
(5)

with the definitions

y[Nx, D[N2TCN21, V2[N2TKN21, g[N2Tf.
(6)

As we proposed in@8#, we shall refer henceforth to form~5! as the
monic representationof the mathematical model of Eq.~1!. Note
that, in this representation,~a! the new variable,y, has units of
generalized coordinate times square root of generalized m
which means that the units ofy are those of themodal vectorsof
the associated undamped system, i.e., the columns of themodal
matrix of this system~@7#!; ~b! the ‘‘inversion’’ of N is safer than
that ofM , for the condition number~@10#! of the former isexactly
the square root of the condition number of the latter, when
condition number is defined over the Frobenius norm; and~c! all
coefficient matrices are symmetric. Also note that the two n
matrices,D and V, have units of frequency; moreover, they a
positive-semidefinite as well. Henceforth, we shall call the la
the frequency matrix; the former will be called thedissipation
matrix, in order to avoid confusion with the original dampin
matrix C.

Now it is apparent that proportional damping, which leads t
damping matrix of the form displayed in Eq.~2!, implies that the
dissipation matrix takes a special formDp that is a linear combi-
nation of 1 and V2, or of 1 and V, for that matter, i.e., scala
factorsa andb exist so that

Dp5a11bV. (7)

The generalization of Eq.~7! is, then,

Dp5(
0

n21

akVk. (8)

By virtue of the Cayley-Hamilton Theorem~@11#!, the right-hand
side of the above expansion represents, upon a suitable choi
the real coefficients$ak%0

n21, any analytic function of the fre-
quency matrix. Below we discuss a choice of the above coe
cients that produces theclosest proportionalapproximation of a
given damping matrix in the least-square sense.

3 The Co-spectral Space of Matrices Commuting With
the Frequency Matrix

Two matrices that share the same set of eigenvectors wil
termed henceforthco-spectral. A simple test to decide whethe
two given matrices are co-spectral is to verify whether these
trices commute under multiplication. If they do, then they a
co-spectral; otherwise, they are not.

A central concept is recalled below:
Lemma 3.1Any square matrix is co-spectral with any of its int
ger powers.
The proof of the foregoing lemma is straightforward, and hen
can be skipped. Moreover,
Lemma 3.2 The set of co-spectral matrices of a given squa
650 Õ Vol. 69, SEPTEMBER 2002
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matrix is a vector space over the complex field.
Proof: Assume that ann3n matrix A is given, and thatB andC
are co-spectral withA. It is apparent that

~i! the n3n zero matrix is co-spectral withA;
~ii ! B1C is co-spectral withA;
~iii ! given any complexb, b B is co-spectral withA.

Moreover, the operations of addition and scalar multiplicatio
defined for these matrices, obviously satisfy the standard laws
a vector space, thereby completing the proof.

Now, by virtue of the Cayley-Hamilton theorem and the abo
result, we have
Lemma 3.3Given an n3n matrixA with a complete setof eigen-
vectors, the linearly independent set$Ak%0

n21, with n<n, spans
the space of matrices that are co-spectral withA. This set is then
a basis for the said space. For symmetric matrices, n5n.

We will limit the discussion below to only symmetric, positive
semidefinite~or definite! matrices. We are interested inprojecting
the dissipation matrixD onto the spaceO of matrices that are
co-spectral withV—we use caligraphic fonts for spaces and se
in the absence of a caligraphicV, we use the caligraphic font o
its Latin counterpart. We termO the co-spectral spaceof V. By
analogy with Cartesian vectors, whereby a projection onto a
ordinate axis is obtained from the inner product of the given v
tor with the unit vector associated with that axis, we shall defi
the projection of a matrix onto a space in terms of theinner
product of the matrices involved. More specifically, we need
basis for the co-spectral spaceO of V. While any basis will do, it
is most comfortable to work with an orthonormal basisE. Such a
basis can be readily obtained from the set$Vk%0

n21 by means of
the Gram-Schmidt procedure~@10#!. To this end, the orthonorma
basis is defined asE[$Ek%0

n21. We describe below how to defin
each of the basis matricesEk .

The inner product of twon3n matricesA andB, which will be
needed in the sequel, is defined as

~A,B![tr~AWBT!

where W is a positive-definite weighting matrix that is define
according to the user’s needs. Note that theFrobenius normof
any n3n matrix now becomes, under the above inner-prod
definition,

iAi5Atr~AWA T!.

It is thus apparent that, if we want then3n identity matrix1 to
have a unit Frobenius norm, we have to defineW as

W[
1

n
1,

and hence, the inner product becomes

~A,B![
1

n
tr~ABT! (9)

while the Frobenius norm takes the form

iAi5A1

n
tr~AAT!. (10)

Now we have

E05V051

which is, by definition, of unit norm. Moreover, the projection
D onto E0 is simply

~D,E0!5
1

n
tr~DE0

T!5
1

n
tr~D!.

Furthermore, the componentD0 of D onto E0 is

D05
1

n
tr~D!1.
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Likewise, the componentDk of D onto Ek is given by

Dk5
1

n
tr~DEk

T!Ek .

Therefore, the componentD01 of D onto the subspace spanned
E0 andE1 is simply

D01[
1

n
tr~D!11

1

n
tr~DE1!E1

where we have recalled the symmetry ofEk , for k50, . . . ,n
21. By extension, the component of the same matrixD onto the
subspace spanned by$Ek%0

l is denoted byD01̄ l and is defined, for
l 51,̄ ,n21, as

D01̄ l[
1

n
@ tr~D!11tr~DE1!E11¯1tr~DEl !El #.

Now it is apparent that the componentDO of D onto the spaceO
is

DO5
1

n (
0

n21

tr~DEl
T!El . (11)

Thus, all we need to obtain the foregoing projection is the ort
normal basisE. This basis can be found by means of the Gra
Schmidt orthogonalization procedure:

E05V0[1,

E15
V2~1/n!tr~V!1

iV2~1/n!tr~V!1i
,

E25
V22~1/n!@ tr~V2!11tr~V2E1!E1#

iV22~1/n!@ tr~V2!11tr~V2E1!E1#i
,

]

En215
Vn212~1/n!(0

n22tr~Vn21En22!En22

iVn212~1/n!(0
n22tr~Vn21En22!En22i

.

4 The Orthogonal Decomposition of the Damping
Matrix

Based on the foregoing background, we have a decompos
of the dissipation matrix in the form

D5DO1D' , (12)

whereD'—readdelta-perp—is the component ofD lying outside
of the space spanned byE, and hence, it is theerror in the ap-
proximation of the dissipation matrix withDO . By virtue of the
definition of the foregoing approximation, moreover, the tw
components of the decomposition~12! are mutually orthogonal, a
relation that is made apparent below.

First, we calculate the inner product of the two foregoing co
ponents:

tr~DOD'!5tr~DOD!2tr~DO
2 !.

Furthermore, the first term of the expression appearing in
right-hand side of the above equation is readily computed, rec
ing Eq. ~11!, as

tr~DOD!5
1

n (
0

n21

tr2~DEl !. (13a)

The second term of the same expression is expanded, in turn
Journal of Applied Mechanics
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, as

tr~DO
2 !5

1

n2 tr$@ tr~D!11tr~DE1!E11¯1tr~DEn21!En21#2%

or, upon further expansion,

tr~DO
2 !5

tr~D!

n2 tr$1@ tr~D!11tr~DE1!E11¯1tr~DEn21!En21#%

1
tr~DE1!

n2 tr$E1@ tr~D!11tr~DE1!E11¯

1tr~DEn21!En21#%

]

1
tr~DEn21!

n2 tr$En21@ tr~D!11tr~DE1!E11¯

1tr~DEn21!En21#%.

Now, if we recall the orthonormality ofE, the above expression
simplifies to

tr~DO
2 !5

1

n (
0

n21

tr2~DEl !. (13b)

Upon comparison of expressions~13a! and ~13b!, we obtain

tr~DOD'!50 (14)

and hence, the two componentsDO andD' are orthogonal to each
other. Moreover, the relative errore of the foregoing approxima-
tion is readily computed as

e5
iD'i
iDi

5Atr~D'
2 !/n

tr~D2!/n
5Atr~D'

2 !

tr~D2!
. (15)

Let us now recall the definitions~6!, which allow us to obtain a
decomposition ofC similar to that of Eq.~12!, namely,

C[CO1C'

where, apparently,

CO[NTDON, C'[NTD'N

and hence,

DO5N2TCON21, D'5N2TC'N21.

Upon substitution of the foregoing relations into Eq.~14!, we
obtain

tr~N2TCON21N2TC'N21![tr~N2TCOM21C'N21!50

and, if we recall that the trace of a product is invariant unde
cyclic permutation of its factors, then

tr~M21COM21C'!50

or

tr@M21CO~C'M21!T#50.

That is: the product C'M21 is orthogonal to the product
M21CO . It is thus apparent that the orthogonal decomposition
the dissipation matrixD does not lead to an orthogonal decomp
sition of the damping matrixC as such, but rather of a linea
transformation of it. This is not surprising at all, for the transfo
mation of Eqs.~6! is not isometric, i.e., it does not preserve th
inner product of the space at hand. Nevertheless, the compo
CO of the damping matrixC is guaranteed to lead to a deco
plable system, namely,

Mẍ1COẋ1Kx5f~ t !, x~0!5x0 , ẋ~0!5v0 , (16)

and hence, the damping represented by matrixCO is proportional.
Moreover, the foregoing matrixCO is closest to the original ma
trix C in the least-square sense.
SEPTEMBER 2002, Vol. 69 Õ 651
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4.1 The Least-Square Approximation of the Damping Ma-
trix. The above results show that the proportional-damping m
trix of an arbitrarily damped system cannot be obtained dire
from the given mathematical model, Eq.~1!. That is, the projec-
tion of C onto the co-spectral space ofK does not lead to the
least-square approximation ofC with a proportional-damping ma
trix.

Kujath @9# proposed a proportional-damping matrixD derived
from D in the form

D8[ETDE5D1G

whereE is defined as

E5@e1 e2 ¯ en#

with ei being thei th ~unit! eigenvector ofV, and hence,E is
orthogonal, whileD is defined as

D[diag~d118 d228 ¯dnn8 !

andd i i8 is the i th diagonal entry ofD8. Notice thatD8 is diagonal
only if the system is proportionally damped. Apparently, the dia
onal entries ofG are all zero, and hence, tr(G)50; moreover,

tr~D'!5tr~EGET!5tr~ETEG!5tr~G!50, (17)

i.e.,

tr~DO!5tr~D!5tr~D8!. (18)

We prove below thatD is nothing but the least-square approxim
tion ETDOE defined above.

To this end, we show first that the two matricesDO andD8, or
their counterpartsETDOE andD, have the same projections alon
a set ofn linearly independent vectors spanningO. Let us choose,
for convenience, this set asB5$Vk%0

n21. Moreover, sinceD8 is
the dissipation matrix expressed in the basis$ei%1

n , we also need
V in this basis. LetVd be the representation ofV in this basis,
i.e.,

Vd5ETVE5diag~v1 ,v2 ,¯,vn!

where$vi%1
n is the set of eigenvalues ofV. Hence,

Vd
k5diag~v1

k ,v2
k ,¯,vn

k!.

Now,

~D,Vd
0!5

1

n
tr~D1!5

1

n
tr~D!5

1

n (
1

n

d i i8 5
1

n
tr~D8!

5
1

n
tr~DO!5~D,Vd

0!,

where we have recalled Eq.~18!. Likewise, fork52,̄ ,n21,

~D,Vd
k!5

1

n
tr~DVd

k!5
1

n (
1

n

d i i8v i
k5~D,Vd

k!5
1

n
tr~DVd

k!

5~DO ,Vd
k!,

thereby proving thatD5ETDOE. Note that D is apparently
positive-definite and hence,DO is positive-definite as well.

We illustrate now the foregoing concepts with three examp

5 Examples
In the examples below, reference is made to the damping r

of a mode. In order to define amodal damping ratio, the charac-
teristic equation of ann-degree-of-freedom system is represen
as a product of 2n linear factors, namely,

P~s!5~s2s1!~s2 s̄1!~s2s2!~s2 s̄2!¯~s2sc!~s2 s̄c!

3~s2sc11!¯~s2s2n! (19)

where we have assumedc pairs of complex-conjugate eigenvalue
and r[2(n2c) real eigenvalues. Every pair of complex
652 Õ Vol. 69, SEPTEMBER 2002
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conjugate factors leads to a quadratic factor of the form (s2si)
3(s2 s̄i)5s212z iv is1v i

2 , where 0,z i,1 plays the role of
the damping ratio of thei th underdamped mode andv i that of the
natural frequency of the same mode. However, similar quadr
terms are not directly available for real eigenvalues, since thr
last linear factors of the product of Eq.~19! can give rise to up to
r !/ @2(r 22)!# quadratic factors. We will not dwell on how to pa
the 2(n2c) real eigenvalues to yield the damping ratios of t
overdamped systems. In the examples below,r 52 at most, and all
linear factors yield one unique quadratic factor.

5.1 A Two-Degree-of-Freedom Model of the Suspension o
a Terrestial Vehicle. A model of the suspension of a terrestri
vehicle is shown in Fig. 1. The model consists of a body w
massM , supported by two spring-dashpot arrays. The stiffnesski
and the dashpot coefficientci , for i 51,2, of the two arrays are
not necessarily the same. Moreover, the center of mass~c.m.! of
the body is located a distanced from its geometric center and th
mass moment of inertia of the body about its c.m. is denoted bJ.
We will consider only two types of motion for the system, name
~a! up-and-down translational motion of the body along thex-axis
and ~b! small angular motion of the body about an axis perpe
dicular to the plane of the figure. The mathematical model ta
on the form of Eq.~1!, with x5@x u#T and coefficient matrices

M[FM 0

0 J
G ,

C[F c11c2 c2~ l 1d!2c1~ l 2d!

c2~ l 1d!2c1~ l 2d! c1~ l 2d!21c2~ l 1d!2G ,
and

K[F k11k2 k2~ l 1d!2k1~ l 2d!

k2~ l 1d!2k1~ l 2d! k1~ l 2d!21k2~ l 1d!2G .
Now, we choose matrixN as

N5FAM 0

0 AI
G ,

the mathematical model of the system at hand in monic form~5!
then following. In order to ease the ensuing calculations, we
sume the relations

c15c, c252c, k152k, k25k, d5
l

2
, I 5Mr 2

with r denoting the radius of gyration of the block. With th
foregoing relations, the system matrices now become

Fig. 1 A two-degree-of-freedom model of a suspension
Transactions of the ASME
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M5M F1 0

0 r 2G , C5cF 3 5l /2

5l /2 19~ l /2!2G ,
K5kF 3 l /2

l /2 11~ l /2!2G ,
whence

N5AM F1 0

0 r
G .

Moreover, we introduce the notation

l5
l

r
, s5

c

M
, v25

k

M
.

Then, the two matricesV2 andD are readily computed as

V25v2F 3 l/2

l/2 11~l/2!2G , D5sF 3 5l/2

5l/2 19~l/2!2G .
It is now apparent thatD andV2 do not commute under multipli-
cation, and hence, the system at hand is not proportion
damped. Assuming the numerical values

l52), v51 rad/s, M51 ton,

and l 51 m, s51 ton/s,

we obtain the system matrices displayed below1:

M5F1 0

0 1/12G , C5F 3 5/2

5/2 19/4G , K5F 3 1/2

1/2 11/4G .
Therefore,

V25F 3 )

) 33G , D5F 3 5)

5) 57 G ,
while the orthonormal basisE comprises two matrices, namely,

E05F1 0

0 1G , E15F 20.993399 0.114708

0.114708 0.993399G ,
whence

DO5F2.368421 3.190620

3.190620 57.631578G
and

D'5D2DO5F0.631578966 5.469634129

5.469634129 20.63157897G .
The eigenvalues ofV are, moreover,

v151.703035858,v255.753231170,

while its eigenvectors are stored columnwise in matrixE:

E5F0.05744881285 0.9983484531

0.9983484531 20.05744881285G .
Now,

D85ETDE5F2.1848205012 5.505977615

5.505977616 57.81517949G
and hence,

D5F2.1848205012 0

0 57.81517949G ,
1The units ofM , C andK are ton, ton s21, and ton s22, respectively, those ofD

andV beings21.
Journal of Applied Mechanics
ally

G5F 0 5.505977615

5.505977616 0 G
As the reader can readily verify,D5ETDOE andG5ETD'E. The
Frobenius norm of the error in the approximation of the dissi
tion matrix with DO is computed from Eq.~15!, which yields
about 13%.

The mathematical model of the same system in decoupled f
thus becomes

z̈212.184205ż212.900331z25h2~ t !

z̈1157.815179ż1133.099669z15h1~ t !

wherez1 andz2 are the normal coordinates of the proportiona
damped system, andh1(t), h2(t) are the projections of the gen
eralized force of the given system in monic form onto the norm
coordinates. Moreover, the projectionCO of the damping matrix
C onto the spaceO is calculated as

CO5F 2.368421 0.9210526

0.9210526 4.802632G
The computed eigenvalues of the given system and its proport
ally damped approximation are displayed in Table 1. It is appar
from Table 1 that the given system and its proportionally damp
approximation have two complex and two real eigenvalues,
are quite close to each other. Moreover, these eigenvalues ind
one underdamped and one overdamped modes. The natura
quencies and the damping ratios for the two systems are, co
spondingly, slightly different, as illustrated in Table 2. Note th
the natural frequencies of the proportionally damped system
derestimate those of the given system. However, the proport
ally damped system overestimates the damping ratio of the
mode but underestimates that of the second mode.

5.2 A Three-Degree-of-Freedom Model for the Vertical Vi-
bration of Mass-Transit Cars. The mechanical modelof one-
half of a subway car with pneumatic tires is shown in Fig. 2. T
car is mounted on twobogies, each carrying two wheel axles. Th
above model consists of an H-shaped structural element, whic
for this reason termedthe H in the subway jargon. Moreover, th
suspension itself consists of two parts, theprimary and thesec-
ondarysuspensions. The primary suspension is composed, in t
of eight identical springs of stiffnessk1 and four more of stiffness
k2 , wherek1 accounts for the coupling of the chassis to the a
and k2 for the support of the motor-differential bridge. The c
body is coupled to the chassis via a secondary suspension,

Table 1 Eigenvalues of the given system and its proportion-
ally damped approximation

Given System Proportionally Damped System

20.85129870426 j 1.590887366 21.0924102476 j 1.306510995

20.5102756076 20.5782926128

257.78712698 257.23688690

Table 2 Modal parameters of the given system and its propor-
tionally damped approximation

Given System Proportionally Damped System

v151.804337024 s21 v151.703035856 s21

z150.4998712741 z150.6414487666

v255.430226637 s21 v255.753231170 s21

z255.367860910 z255.024583385
SEPTEMBER 2002, Vol. 69 Õ 653
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posed of two identical springs of stiffnessk3 . Furthermore, the
spring stiffness of the rubber wheels isk4 . Except for the internal
damping of the rubber in which the springs are cast, and for
of the tires, the system is undamped. Referring to Fig. 2, we h
the definitions below:
m1 : mass of the chassis;
m2/2: mass of each motor-differential bridge;
m3 : one-half the mass of the car body.

In an attempt to damp the vibrations observed when the
run at speeds higher than 80 km/h, a study was conducte
determine suitable values of dashpot coefficientsc1 andc2 for the
primary and secondary suspensions, respectively~@12#!.

The iconic model corresponding to the layout of Fig. 2 w
added shock absorbers is shown in Fig. 3, where we neglec
damping of the tires. In deriving the mathematical model of
system appearing in this figure, we define now the thr
dimensional vector of generalized coordinatesx as x
5@x1 x2 x3#T where all three components are measured from
equilibrium configuration.

The mathematical model corresponding to Fig. 3 takes the f
of Eq. ~1!, with matricesM , C, andK given by

M5Fm2 0 0

0 m1 0

0 0 m3

,G C5F c1 2c1 0

2c1 c11c2 2c2

0 2c2 c2

G ,

K5F k11 k12 0

k12 k22 k23

0 k23 k33

G
where k1158k114k214k4 , k12528k124k2 , k2258k114k2
12k3 , k2352k33522k3 . Moreover, the manufacturer provide
the numerical values given below2:

k154900, k253430, k35837, k451783

m151.971, m253.256, m3515.78

where the value ofm3 is given under full load, i.e., when the ca
are fully packed with people. Furthermore, the values of the da
pot coefficients that best damp the system were found in@12# as

c15156.9, c25247.1. (20)

Using the foregoing data, the system matrices are readily
culated as

2The units used in this example are the same as those of Example 1.

Fig. 2 Layout of the suspension system
654 Õ Vol. 69, SEPTEMBER 2002
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M5F 3.256 0 0

0 1.971 0

0 0 15.78
G ,

C5F 156.9 2156.9 0

2156.9 404.0 2247.1

0 2247.1 247.1
G ,

K5F 60052000 252920000 0

252920000 54594000 21674000

0 21674000 1674000
G ,

whence the two matricesV2 andD are given by

V25F 18443.48893 220889.8021 0

220889.8021 27698.63011 2300.1640260

0 2300.1640260 106.836501
G ,

D5F 48.187961 261.935184 0

261.935184 204.972096 2140.112194

0 2140.112194 156.590621
G .

It can be shown that these two matrices do not commute un
multiplication, and hence, this system, like the previous one, is
proportionally damped. Using the same procedure as for the
example, we find the projectionDO of D onto the spaceO as

DO5F 158.432273 240.325342 234.744055

240.325342 174.719532 230.743266

234.744055 230.743266 76.598872
G ,

while its complementD' is given by

D'5F 2110.2443123 221.60984227 34.74405632

221.60984229 30.2525629 2109.3689278

34.74405632 2109.3689278 79.99174968
G .

The eigenvalues ofV are, in turn,

v159.092542549 s21, 41.19482359 s21, 210.8755911 s21

and its eigenvectors are stored columnwise in matrixE:

E5F 20.7748604459 0.6259605113 0.08811769568

20.6211730188 20.7798369042 0.07744988086

0.1171979980 0.005276513996 0.9930945517
G .

Then

Fig. 3 The iconic model of the suspension of subway cars
Transactions of the ASME
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D85ETDE5F 55.06684058 66.77996143 22.70847441

66.77996143 204.3662317 25.90924029

22.70847441 25.90924030 9.386045683
G

while

D5F 55.06684058 0 0

0 204.3662317 0

0 0 9.386045683
G ,

and

G5F 0 66.77996143 22.70847441

66.77996143 0 25.90924029

22.70847441 25.90924030 0
G .

The error in this approximation, computed with the aid of E
~15!, gives about 45%. The mathematical model of the clos
proportionally damped system in decoupled form then becom

z̈1155.06684034ż111697.013489z15h1~ t !

z̈21204.3662314ż2144468.51488z25h2~ t !

z̈319.386046082ż3182.67432986z35h3~ t !

where$zi%1
3 is the set of normal coordinates of the proportiona

damped system at hand, while$hi(t)%1
3 are the projections of the

generalized force of the said system onto the normal coordina
Moreover, the projectionCO of the damping matrixC onto the
spaceO is

CO5F 368.6169970 2185.4163721 225.11919552

2185.4163721 286.9551152 223.02098903

225.11919552 223.02098902 158.0985150
G

which thus leads to the closest proportionally damped system
the form of Eq. ~16!. The computed eigenvalues of the give
system and its proportionally damped approximation are
played in Table 3.

It is again apparent that the given system and its proportion
damped approximation observe the same modal behavior: t
underdamped modes. Notice, however, from Table 4, that now
differences between the corresponding modal parameters o

Table 3 Eigenvalues of the given system and its proportion-
ally damped approximation

Given System Proportionally Damped System

296.882688636 j 168.2682971 2102.18311576 j 184.4644295

230.663011216 j 10.35129840 227.533420176 j 30.64187108

26.8638591576 j 10.53039184 24.6930230406 j 7.787802295

Table 4 Modal parameters of the given system and its propor-
tionally damped approximation

Given System Proportionally Damped System

v1512.56987330 s21 v159.092542540 s21

v2532.36309063 s21 v2541.19482358 s21

v35194.1661020 s21 v35210.8755910 s21

z150.5460563518 z150.5161397947

z250.9474685703 z250.6683708723

z350.4989680878 z350.4845658770
Journal of Applied Mechanics
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two systems are more pronounced. Also notice that the pro
tionally damped system shows a first natural frequency lower t
that of the given system, but the second and third frequen
observe the reverse relation. Moreover, the three damping ra
of the proportionally damped system underestimate those of
given system. In particular, the second damping ratio of the p
portional system underestimates the actual one by about 30%

An important feature of this example is that it illustrates th
properties of a single-degree-of-freedom systems, or of pro
tionally damped systems for that matter, cannot be extrapolate
arbitrarily damped multi-degree-of-freedom systems. While
model of Fig. 3 may lead one to conclude that this system has
undamped mode, namely, one motion under whichx15x25x3 ,
the fact of the matter is, as Table 4 shows, that all three mode
this model are damped.

5.3 A Three-Degree-of-Freedom System With One Over-
damped Mode. We include this example to show the drama
differences that can occur in the modal behavior of the giv
system and its proportionally damped approximation. To this e
we use the same parameters of the system of Fig. 3, but wi
different damping matrixM whose third diagonal entry is on
order of the magnitude smaller than its counterpart in Example

M5F 3.256 0 0

0 1.971 0

0 0 1.578
G .

Then, the original system and its proportionally damped appro
mation have two underdamped and one overdamped modes, w
the eigenvalues are now substantially different, as can be s
from Tables 5 and 6. Furthermore, while the second underdam
mode of the given system is slightly damped, withz2,3%, its
proportionally damped counterpart is heavily damped, withz2
.92%. As to the third mode, note that the damping ratio of
given system is about two times as big as that of its proportion
damped approximation.

Our analysis then shows that design conclusions drawn fro
proportional-damping approximation can be dangerously wron
mode of the proportionally damped system derived using a le
square approximation can appear heavily damped, and not n
ing any active control, when this mode is, in fact, slightly damp

Table 5 Eigenvalues of the given system and its proportion-
ally damped approximation

Given System Proportionally Damped System

267.418614846 j 168.1615288 2103.87293296 j 183.5492179

20.85785824976 j 31.72446644 224.303318596 j 9.960961556

2266.1058354 2138.7439747

27.091895084 214.65419970

Table 6 Modal parameters of the given system and its propor-
tionally damped approximation

Given System Proportionally Damped System

v15181.1727612 s21 v15210.9025879 s21

v2531.73606296 s21 v2526.26541547 s21

v3543.44185385 s21 v3545.09081849 s21

z150.3721233501 z150.4925161608

z250.0270310230 z250.9252973218

z353.144406906 z351.700991239
SEPTEMBER 2002, Vol. 69 Õ 655
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and needing active control. Even the proportionally damped s
tem best approximated with the method proposed here in the le
square sense can be dangerously misleading.

6 Conclusions
The decomposition of the damping matrix of arbitrarily damp

linear mechanical systems into two orthogonal components
the subject of this paper. One of these components, the bes
proximation of the given damping matrix in the least-squa
sense, leads to proportional damping. Upon a linear transfor
tion given by the factors of the mass matrix of the system, the
components of the damping matrix are orthogonal, which justi
the above claim on the least-square approximation of the dam
matrix. The concept was illustrated with three examples. App
ently, even the best proportionally damped approximation to
arbitrarily damped system can be misleading in that it can yie
heavily damped mode, while the actual mode can be slig
damped. We have also shown, with Examples 2 and 3, that p
erties of single-degree-of-freedom systems, or of proportion
damped systems for that matter, cannot be extrapolated
arbitrarily-damped systems.

Finally, we have shown that the proportional-damping mat
that best approximates the nonproportional-damping matrix
positive-definite if the latter is; else, it is positive-semidefinite.

We have also shown that the least-square approximation o
nonproportional damping matrix with a proportional-damping m
trix can be computed from the same similarity transformation
the dissipation matrix that renders the frequency matrix diago
as proposed elsewhere.
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Elastic-Plastic Contact Analysis of
a Sphere and a Rigid Flat
An elastic-plastic finite element model for the frictionless contact of a deformable sp
pressed by a rigid flat is presented. The evolution of the elastic-plastic contact
increasing interference is analyzed revealing three distinct stages that range from
elastic through elastic-plastic to fully plastic contact interface. The model provides
mensionless expressions for the contact load, contact area, and mean contact pre
covering a large range of interference values from yielding inception to fully pla
regime of the spherical contact zone. Comparison with previous elastic-plastic m
that were based on some arbitrary assumptions is made showing large differe
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Introduction
The elastic-plastic contact of a sphere and a flat is a fundam

tal problem in contact mechanics. It is applicable, for example
problems such as particle handling~@1#!, or sealing, friction, wear,
and thermal and electrical conductivity between contacting ro
surfaces. Indeed, an impressive number of works on the conta
rough surfaces, that were published so far~see review by Liu
et al. @2#!, are based on the contact behavior of a single spher
asperity~Bhushan@3#! in a statistical model of multiple asperit
contact ~Bhushan@4#!. Some of these works are restricted
mainly pure elastic deformation of the contacting sphere, e.g.,
pioneering work of Greenwood and Williamson@5#, which is
based on the Hertz solution for a single elastic sphere~e.g., Ti-
moshenko and Goodier@6#!. Other works are restricted to pur
plastic deformation of the contacting sphere, based on the m
of Abbott and Firestone@7#, which neglects volume conservatio
of the plastically deformed sphere.

The works on either pure elastic or pure plastic deformation
the contacting sphere overlook a wide intermediate range of in
est where elastic-plastic contact prevails. An attempt to bridge
gap was made by Chang et al.@8# ~CEB model!. In this model the
sphere remains in elastic Hertzian contact until a critical inter
ence is reached, above which volume conservation of the sp
tip is imposed. The contact pressure distribution for the plastic
deformed sphere was assumed to be rectangular and equal
maximum Hertzian pressure at the critical interference. The C
model suffers from a discontinuity in the contact load as well as
the first derivatives of both the contact load and the contact are
the transition from the elastic to the elastic-plastic regime. Th
deficiencies triggered several modifications by other research
Evseev et al.@9# suggested a uniform pressure distribution, eq
to the maximum Hertzian pressure at the critical interference
the central portion of the contact area, and an elliptical Hertz
distribution outside this portion starting from the maximum pre
sure and approaching zero at the contact boundary. The au
concluded their paper with a recommendation to find a more g
eral model for the elastic-plastic regime. Chang@10# used an ap-
proximate linear interpolation for the elastic-plastic regime
connecting the value of the contact load at yielding inception
that at the beginning of the fully plastic regime. Zhao et al.@11#
used mathematical manipulation to smooth the transition of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, August
2001; final revision, December 14, 2001. Associate Editor: E. Arruda. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four mo
after final publication of the paper itself in the ASME JOURNAL OF APPLIED
MECHANICS.
Copyright © 2Journal of Applied Mechanics
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contact load and contact area expressions between the elasti
elastic-plastic deformation regimes. Kucharski et al.@12# solved
the contact problem of a deformed sphere by the finite elem
method~FEM! and developed empirical proportional expressio
for the contact load and the contact area. Although the auth
intended to describe elastic-plastic contact, their results con
trated on the behavior of the sphere deep into the plastic reg
Surprisingly, the mean contact pressure in@12# was, in some
cases, higher than the indentation hardness and there
unreasonable.

The work in@1# employed the finite element method to analy
the contact of two identical spheres, which by symmetry
equivalent to that of one sphere in contact with a frictionless ri
plane. The analysis in@1# was restricted to an aluminum sphere
radiusR50.1 m loaded with a mean contact pressure that ne
exceeded 2.3 times the material’s yield strength.

As can be seen from the literature survey, accurate genera
lutions for the elastic-plastic contact of a deformable sphere an
rigid flat are still missing. The existing elastic-plastic solutio
suffer from several deficiencies caused mainly by assuming s
arbitrary contact pressure distribution or an arbitrary evolution
the plastic region inside the sphere. The few existing finite e
ment method solutions are too restricted in terms of materi
geometry, and loading.

It should be noticed here that much research has also been
~mostly by utilizing the finite element method! on the indentation
problem of a half-space by a rigid sphere, e.g.,@13–16#. However,
from the results provided by Mesarovic and Fleck@17# for both a
sphere pressed by a rigid flat and a half-space indented by a
sphere, deep into the fully plastic regime, it seems that the be
ior of these two cases is different. Intuitively, one can see tha
the indentation case the radius of the rigid spherical indenter
mains constant whereas the curvature of a deformable sp
changes continuously during the deformation. Moreover, the
placed material in the indented half-space is confined by the r
indenter and the elastic bulk of the half-space. This is quite
ferent from the situation where the displaced material of the
formable sphere is free to expand radially as shown schematic
in Fig. 1.

The present research offers an accurate finite element me
solution for the elastic-plastic contact of a deformable sphere
a rigid flat by using constitutive laws appropriate to any mode
deformation, be it elastic or plastic. It also offers a general dim
sionless solution not restricted to a specific material or geome

Theoretical Background
Figure 1 presents a deformable hemisphere, with a radiuR,

pressed by a rigid flat. The solid and dashed lines show the s
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ation after and before the deformation, respectively. The inter
ence,v, and contact area with a radius,a, ~see Fig. 1! correspond
to a contact load,P.

The critical interference,vc , that marks the transition from th
elastic to the elastic-plastic deformation regime~i.e., yielding in-
ception! is given by~e.g., Chang et al.@8#!

vc5S pKH

2E D 2

R. (1)

The hardness,H, of the sphere is related to its yield strength
H52.8Y ~@18#!. The hardness coefficient,K, is related to the Pois-
son ratio of the sphere by~Chang et al.@19#! K50.45410.41n.
E is the Hertz elastic modulus defined as

1

E
5

12n1
2

E1
1

12n2
2

E2

whereE1 , E2 andn1 , n2 are Young’s moduli and Poisson’s ratio
of the two materials, respectively. In the case of the rigid flatE2
→`.

The Hertz solution for the elastic contact of a sphere and a
provides the contact load,Pe , and contact area,Ae , for v<vc in
the form

Pe5
4

3
ER1/2v3/25PcS v

vc
D 3/2

(2)

Ae5pRv5Ac

v

vc
(3)

where Pc and Ac are the contact load and contact area, resp
tively, at v5vc . Note thatPe andAe can be normalized byPc
andAc , respectively, to obtain simple exponential functions of t
dimensionless interference,v/vc . These functions are indepen
dent of the material properties and sphere radius.

Using Eqs.~1!–~3! the mean contact pressure,pe5Pe /Ae , for
v<vc is

pe5
2

3
KHS v

vc
D 1/2

5pcS v

vc
D 1/2

(4)

wherepc is the mean contact pressure atv5vc .
For v.vc the contact is elastic-plastic and a numerical so

tion is required to find the relation betweenv/vc , the contact
load, contact area, and mean contact pressure. The finite ele
method~for example, Refs.@20# and @21#! is commonly used for
such a numerical solution where the contact between the sp
and the flat is detected by special contact elements~@22#!. A yield-
ing criterion should be adopted in solving elastic-plastic proble
In the present analysis the von Mises criterion, which correla
well with experiments~see Bhushan@3#! was selected as the pre
ferred criterion. A recent example for the finite element meth
solution to an elastic-plastic contact problem can be found in
et al. @23#.

Fig. 1 A deformable sphere pressed by a rigid flat
658 Õ Vol. 69, SEPTEMBER 2002
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Finite Element Model „FEM …

A commercial ANSYS 5.7 package was used to solve the c
tact problem. The hemisphere, shown in Fig. 2, was modeled
quarter of a circle, due to its axisymmetry. The rigid flat w
modeled by a line. The material of the sphere was assum
elastic-perfectly plastic with identical behavior in tension a
compression. Although the model can easily accommodate s
hardening the simpler behavior was selected to allow compar
with existing previous models. A static, small-deformation ana
sis type was used and justified by comparison with the results
large-deformation analysis. The von Mises yielding criterion w
used to detect local transition from elastic to plastic deformati

The finite element method numerical solution requires as
input some specific material properties and sphere radius~see@1#,
for example!. However, in order to generalize the present solut
and eliminate the need for a specific input, the numerical res
were normalized with respect to their corresponding critical v
ues at yielding inception,vc , similar to Eqs.~2! and ~3!. The
normalization of the mean contact pressure,p, was done with
respect to the yield strength,Y, of the sphere material. The validit
of this normalization was tested by solving the problem for s
eral different material properties (100,E/Y,1000,n50.3) and
sphere radii (0.1 mm,R,10 mm). The dimensionless results o
P/Pc , A/Ac , and p/Y versus the dimensionless interferenc
v/vc , were always the same regardless of the selection of m
rial properties and sphere radius.

The finite element mesh consisted of 225 eight-node quadr
eral axisymmetric elements comprising a total of 714 nod
High-order elements were selected to better fit the curvature of
sphere. The sphere was divided into two different mesh den
zones. Zone I, within a 0.1R distance from the sphere tip~see Fig.
2!, contained 87% of the nodes and had extremely fine mes
better handle the high stress gradients in this zone and to ach
good discretization for accurate detection of the contact area
dius, a. For this reason the typical mesh size was 0.03ac where
ac5(Rvc)

1/2. Zone II, outside the 0.1R distance, had gradua
coarser mesh at increasing distance from the sphere tip.
model also contained a single two-dimensional target element
ing on the flat and 16 two-dimensional surface-to-surface con
elements on the sphere surface in zone I.

The boundary conditions are presented in Fig. 2. The node
the axis of symmetry of the hemisphere cannot move in the ra
direction. Likewise the nodes on the bottom of the hemisph
cannot move in the axial direction due to symmetry. Restrict
also the radial motion of these nodes did not affect the result

Fig. 2 Model description
Transactions of the ASME
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the finite element analysis~FEA! since this boundary is very fa
away from the contact zone and therefore has very little effec
the contact results.

The numerical model was first verified by comparing its outp
with the analytical results of the Hertz solution in the elastic
gime, i.e., forv,vc . The verification included the contact loa
contact area radius, and stress distribution in the contact area
along the axis of symmetry. The difference between the numer
and analytical results was always less than 2.8%. Another ve
cation of the model was done in the elastic-plastic regime~for 1
,v/vc,110! by increasing the mesh density to 2944 nodes a
comparing the results with these obtained with the original 7
nodes. The largest differences in the contact load and contact
were only 1% and 3%, respectively. These two verifications
tablish the validity of the numerical model with the original me
to study the behavior of the sphere in the elastic-plastic regim

Results and Discussion
Figure 3 presents the evolution of the plastic region inside

sphere~within the dashed line frame shown in Fig. 2! for increas-
ing interference values up tov/vc5110. The elastic-plastic
boundary at each interference is determined by all the nodes
equivalent total strain larger than the yield strain,«Y . The axial
and radial coordinates in Fig. 3 are normalized by the criti
contact radius,ac . It is interesting to note the larger axial pen
etration of the plastic region compared to its radial spread.
v/vc5110, for example, the plastic region penetrates about 3ac
below the contact surface and reaches only about 18ac on the
sphere surface.

The evolution of the plastic region at its earlier stages,v/vc
<11, is shown in more details in Fig. 4. Up tov/vc56 the
plastic region is completely surrounded by elastic material.
v/vc56 the plastic region first reaches the sphere surface
radius of about 2.7ac . At this point an elastic core remains locke
between the plastic region and the sphere surface. As the inte
ence increases abovev/vc56 and the plastic region grow, th
elastic core gradually shrinks as shown in Fig. 5. The shrink
rate is very small belowv/vc530 and rapidly increases therea
ter. The surface of the sphere at the contact region is now div
into three subregions as follows:~I! an inner circular elastic sub
region extending radially from the center of the contact until

Fig. 3 Evolution of the plastic region in the sphere tip for 12
ÏvÕvcÏ110
Journal of Applied Mechanics
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edge of the elastic core;~II ! an intermediate annular plastic sub
region between the edge of the elastic core and the outer fron
the plastic region, and~III ! an outer elastic subregion thereafte
The evolution of these three subregions on the sphere surfac
v/vc>6 is demonstrated in Fig. 6 that shows the radial locatio
of the inner and outer elastic-plastic boundaries normalized by
contact area radius,a, as a function of the dimensionless interfe
encev/vc . The horizontal dashed line atr /a51 indicates the
circular boundary of the contact area. From the figure it can
easily seen that belowv/vc56 the sphere surface is fully elastic
At v/vc56 the plastic region reaches the sphere surface for

Fig. 4 Evolution of the plastic region in the sphere tip for 1
ÏvÕvcÏ11

Fig. 5 Dimensionless radial location, r Õac c , of the inner
elastic-plastic boundary on the sphere surface showing its
shrinkage for 6 ÏvÕvcÏ68
SEPTEMBER 2002, Vol. 69 Õ 659
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first time. This occurs very close to the boundary of the cont
area, atr /a50.94. For 6<v/vc<56 the annular plastic subre
gion remains within the contact area. Its outer boundary, wh
first reaches the edge of the contact area atv/vc56.2, coincides
with that of the contact area while its inner boundary gradua
moves towards the contact center as the elastic core shown in
4 shrinks. Forv/vc.56 the outer boundary of the annular plast
subregion somewhat exceeds the boundary of the contact
while the inner elastic core continues to shrink and disappe
completely atv/vc568. From there on the entire contact zone
plastic and the rate of its radial expansion increases substant

From the above discussion it can be seen that the evolutio
the elastic-plastic contact can be divided into three distinct sta
The first one for 1<v/vc<6 where the plastic region develop
below the sphere surface and the entire contact area is elastic
second one for 6<v/vc<68 where the contact area is elasti
plastic containing an annular plastic subregion confined by in
and outer elastic ones. The third stage forv/vc.68 corresponds
to a fully plastic contact area.

Figure 7 presents the results of the mean contact pressurep/Y
as a function of the interference,v/vc , that were obtained by the
present finite element analysis along with the results from
CEB model~@8#! and from Zhao et al.@11#. When the discrete
numerical results of the finite element analysis were curve fitte
became evident that a distinct transition point exists atv/vc56.
This is clearly observed in Fig. 7 by the discontinuity in the slo
of the finite element analysis results atv/vc56. Apparently, the
transition from fully elastic to elastic-plastic contact area, whi
occurs when the expanding plastic region first reaches the sp
surface, changes the behavior of the mean contact pressure
similar transition or change was found atv/vc568 that marks the
inception of fully plastic contact area when the central elastic c
is completely eliminated. The empirical expressions obtain
from the curve fitting for the mean contact pressure in the sta
that were discussed above are

Fig. 6 Radial location of inner and outer elastic-plastic bound-
aries on the sphere surface for 6 ÏvÕvcÏ110
660 Õ Vol. 69, SEPTEMBER 2002
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S p

YD
1

51.19S v

vc
D 0.289

for 1<v/vc<6 (5)

S p

YD
2

51.61S v

vc
D 0.117

for 6<v/vc<110. (6)

From Fig. 7 it can be seen that the dimensionless mean con
pressure of the finite element analysis atv/vc5110 approaches
the valuep/Y52.8. This is identical to the ratio between th
hardness and yield strength found experimentally for many m
rials as indicated by Tabor@18#. Hence, the value ofp at this point
is that of the material hardness,H, and, hence,v/vc5110 marks
the inception of the fully plastic regime where the mean cont
pressure assumes a constant value equals to the material hard

The CEB model~@8#! predicts a constant mean contact pressu
which largely underestimates the finite element analysis res
except for a small range,v/vc<3, where it largely overestimate
the finite element analysis results. This is one of the limitations
this model as discussed by Evseev et al.@9#.

Zhao et al. model@11# predictsp/Y values that are fairly close
to the finite element analysis results. The largest deviation
about 9% occurs atv/vc554, which was selected in Ref.@11#,
based on the work of Johnson@24#, as the lowest possible incep
tion of fully plastic regime wherep/Y52.8. Actually the fully
plastic regime starts atv/vc5110 as can be seen from the fini
element analysis results in Fig. 7.

The results obtained by Kucharski et al.@12# cover the range of
175<v/vc<2800 that is very deep into the fully plastic regim
and therefore outside the range of interest of the present anal

The change in the slope of the mean contact pressure a
transition pointv/vc56 is somewhat similar to a typical stres
strain curve where a change of slope occurs at the elastic limi
the spherical contact problem the valuev/vc56 is analogous to
the critical strain, which corresponds to yielding inception. Th
point marks the elastic limit of the spherical contact interfa
From there on the resistance of the material to increasing st
decreases and eventually disappears atv/vc5110.

The finite element analysis results for the dimensionless con
area and contact load are presented in Figs. 8 and 9, respect
along with the results of Refs.@8# and @11#. The corresponding
empirical expressions obtained from curve fitting of the finite
ement analysis numerical results in the various stages of the
lution of the elastic-plastic contact are

Fig. 7 Dimensionless mean contact pressure, p ÕY, as a func-
tion of the dimensionless interference, vÕvc , in the elastic-
plastic regime
Transactions of the ASME
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Pc
D

1

51.03S v

vc
D 1.425

S A

Ac
D

1

50.93S v

vc
D 1.136

for 1<v/vc<6 (7)

S P

Pc
D

2

51.40S v

vc
D 1.263

S A

Ac
D

2

50.94S v

vc
D 1.146

for 6<v/vc<110. (8)

The accuracy of the curve fitting for Eqs.~7! and ~8! was better
than 97% throughout the range ofv/vc .

From Fig. 8 it is clear that the contact area obtained by the C
model~@8#! overestimates the finite element analysis results. Th
largest difference is 56% atv/vc54. This difference diminishes
as the interference increases and forv/vc5110 it becomes less

Fig. 8 Dimensionless contact area, A ÕA c , as a function of the
dimensionless interference, vÕvc , in the elastic-plastic regime

Fig. 9 Dimensionless contact load, PÕPc , as a function of the
dimensionless interference, vÕvc , in the elastic-plastic regime
Journal of Applied Mechanics
EB
e

than 7%. The reason for the larger deviation at smaller inter
ences is that the CEB model assumes volume conservation o
entire sphere tip forv/vc>1. This in fact is equivalent to assum
ing fully plastic regime of the entire sphere tip as soon as
critical interference is reached. From Fig. 3 it is clear that
plastic region develops gradually with increasing interference
only for very large interferences the entire asperity tip is pla
cally deformed.

The Zhao et al.@11# results underestimate the finite eleme
analysis ones by up to 18% atv/vc510 and overestimate them
by up to 20% atv/vc551. The Zhao et al. model assumes ful
plastic sphere tip atv/vc554. From this point on the contact are
is calculated from the geometrical intersection of the flat with
original profile of the sphere according to Abbott and Firesto
@7#. This is also true for the CEB model, which therefore predi
the same results at large interferences.

At v/vc5110 the contact area based on the Abbott and F
estone approximate calculation is only 7% higher than the m
accurate result of the finite element analysis. It seems there
that the Abbott and Firestone model is a relatively fair appro
mation for the contact area in the fully plastic regime.

Figure 9 presents the contact loadP/Pc versus the interference
v/vc . The contact load obtained by the CEB model~@8#! clearly
differs from the finite element analysis results. It overestimates
finite element analysis results at small interferences, by up to 6
at v/vc52, and underestimates these results by up to 38%
v/vc5110. This is due to a combination of the very inaccura
assumption of constant mean pressure and too large contact
in @8# as shown in Figs. 7 and 8. Contrary to the CEB model,
contact load obtained by Zhao et al. underestimates the finite
ement analysis results at small interferences~21% at v/vc57!
and overestimates these results at large interferences~about 30%
at v/vc552!.

Since the model is general enough to accommodate mat
behavior other than elastic-perfectly plastic, various levels of
ear isotropic strain hardening were also investigated. In the
treme case of a very large tangent modulus that is 0.1E, the dif-
ference in the results, compared to the present elastic-perfe
plastic case, was less than 20%. In fact forv/vc<20 the maxi-
mum difference was less than 4.5%. For most practical mate
the tangent modulus is less than 0.05E hence, the difference in the
results is much smaller and the present case can be conside
general elastic plastic one.

It is interesting to compare some features of the present con
problem of a deformable sphere and a rigid flat with these of
half-space indented by a rigid sphere. The fully plastic regime
indentation starts atA/Ac5113.2 according to Francis@25#, and at
P/Pc>360 according to Johnson@24#. The corresponding finite
element analysis results for fully plastic deformable sphere
v/vc5110 areA/Ac5205 andP/Pc5534. Clearly the two prob-
lems exhibit different behavior. The indented half-space yie
more easily than the pressed sphere. This is probably due to
greater resistance to radial expansion that is imposed on the
flected material in the case of the indented half-space as comp
to the case of the deformable sphere.

Conclusion
The elastic-plastic contact problem of a deformable sphere

a rigid flat was solved by the finite element method consider
the actual constitutive laws for the relevant regime of deform
tion. Hence, the present model is much more accurate than p
ous ones that relied on unrealistic assumptions regarding the
tact pressure distribution or evolution of the plastic region abo
the critical interference. By properly normalizing the contact loa
contact area, and mean contact pressure, the present mode
vides simple analytical expressions that extend the classical H
solution up to a fully plastic contact.

It was found that the evolution of the elastic-plastic contact c
be divided into three distinct stages. The first one for 1<v/vc
SEPTEMBER 2002, Vol. 69 Õ 661
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<6 where the plastic region develops below the sphere sur
and the entire contact area is elastic. The second one fo
<v/vc<68 where the contact area is elastic-plastic, and the t
stage forv/vc.68 corresponds to a fully plastic contact area.

The numerical results of the present finite element anal
were normalized in a way that allowed a general solution tha
independent of specific material and radius of the sphere. Dim
sionless expressions for the mean contact pressure, contact
and contact area were derived for a large range of interfere
values up tov/vc5110.

A change in the behavior of the mean contact pressure
observed atv/vc56, which marks the elastic limit of the contac
area. The interferencev/vc5110 marks the inception of fully
plastic regime where the mean contact pressure becomes eq
the material hardness.

A comparison of the present results with the results of previ
elastic-plastic models as well as with these of indentation mo
showed substantial differences.
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Nomenclature

a 5 radius of contact area
A 5 contact area
E 5 Hertz elastic modulus

E1,2 5 Young’s moduli
H 5 hardness of the sphere
K 5 hardness factor, 0.45410.41n
P 5 contact load
p 5 mean contact pressure,P/A
R 5 radius of the sphere
Y 5 yield strength of the sphere
n 5 Poisson’s ratio of the sphere

n1,2 5 Poisson’s ratio
v 5 interference

Subscripts

c 5 critical values
e 5 elastic contact
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Dynamic Shear Fracture at
Subsonic and Transonic Speeds
in a Compressible Neo-Hookean
Material Under Compressive
Prestress
A crack driven by shear forces translating on its surfaces grows in an isotropic comp
ible neo-Hookean material that is initially in uniform compression. The material re
cates a linear isotropic solid at small deformations, and preserves as a limit case fo
deformations the incompressibility that occurs in the linear case when Poisson’s
becomes 1/2. A plane-strain steady state is assumed such that the crack and surface
move at the same constant speed, whether subsonic, transonic, or supersonic. An
analysis is performed based on superposition of infinitesimal deformations upon l
both for frictionless crack surface slip, and slip resisted by friction. The pre-stress ind
anisotropy and increases the Rayleigh, rotational and dilatational wave speeds from
classical values. A positive finite fracture energy release rate arises for crack sp
below the Rayleight value and at two transonic speeds. In contrast, the transonic ran
a purely linear analysis exhibits only one speed. It is found that friction enhances fra
energy release rate, and that compressive pre-stress enhances the rates for smal
speeds, but decreases it for speeds near the Rayleigh value.@DOI: 10.1115/1.1490374#
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Introduction
Rapid crack growth in shear~mode II! is an important model

for material failure. Because the fracture energy release rate
comes negative there, the Rayleigh wave speed often serves a
theoretical limit for subsonic planar nonbranching growth~@1#!. It
is known~@1–4#! however, that a positive energy release rate a
occurs in the transonic~intersonic! range at the value&v r , where
v r is the rotational wave speed~@5#!. Analyses of both the sub
sonic and transonic cases generally treat linear elastic isotrop
orthotropic ~@6#! solids and assume that wave speeds and o
material properties do not themselves change. However, large
bient compressive stresses could alter these values, and leav
material in an initial state of large elastic deformation.

This study, therefore, considers mode II shear crack growt
an unbounded highly elastic solid initially in a state of unifor
compressive pre-stress. For purposes of illustration, a comp
ible neo-Hookean material that, at small deformations replicat
standard isotropic linear elastic solid~@7#!, is treated. The materia
preserves as a limit case for all deformations the incompressib
that occurs in a linear solid when Poisson’s ration51/2. The
crack is a semi-infinite slit driven by shear loads that translate
its surfaces. A plane-strain dynamic steady state is assume
which the crack and loads move at the same speed. The spee
be any constant value—subsonic, transonic, supersonic. The
tionless crack is treated in detail, and the case of crack surf
subject to Coulomb sliding friction is obtained by simple quad
ture of the frictionless results. The analysis is exact, and a
~@8,9#! based on the superposition of infinitesimal deformatio
upon large.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, August
2001; final revision, February 8, 2002. Associate Editor: A K. Mal. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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Despite its linear elastic formulation, classical fracture mech
ics ~@1#! gives rise to displacement gradient singular behavior
the crack edge. Nevertheless, a finite energy release rate e
Such analyses have been modified~e.g. @6#! by introducing van-
ishingly thin cohesive zones at the crack edges that serve to r
the singular behavior. The energy dissipation rate obtained is g
erally of the same order of magnitude as the classical ene
release rates. This result and the decay of the singular grad
with distance from the crack edge~@1,10#! lend credibility to the
use of classical fracture mechanics.

Therefore, although incorporation of the cohesive zone mo
poses no additional analytical difficulties, the superposed infi
tesimal field is, as a first step, based on the classical frac
approach. This also allows some more direct comparisons w
strictly linear results, e.g.~@1–4#!. Moreover, the insights gained
into the effects of pre-stress on wave speeds follow from the fi
equations, not the conditions imposed at the crack edge.
aforementioned spatial decay is seen in the static analysis o
dentation by a rigid conical indentor~@9#!: The effects of singular
behavior in the superposed field die out rapidly away from
indentor apex.

The results developed in this article show that friction enhan
the energy release rate, and that the compressive pre-stress n
ably affects that rate and solution behavior in general. As expe
~@11#!, pre-stress is manifest in the superposed deformations
de facto anisotropy. Moreover, pre-stress causes the dilatatio
rotational, and Rayleigh wave speeds in the crack plane to
crease from their classical values~@5#!.

For subsonic crack growth, pre-stress generally enhances
ergy release rate for low crack speeds and whenn→1/2. In the
transonic case, pre-stress generates two crack speeds that e
positive release rates. Both speeds vary with pre-stress, and
ceed the single linear isotropic value~@2#!. The higher of the two
speeds is associated with release rates that exceed the linea
tropic value, while the rates for the lower speed fall below th
value. Moreover, while the linear isotropic rate is actually u

8,
the
nt of
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bounded whenn50, a finite rate exists for the lower speed i
duced by pre-stress. The analysis begins with discussion of
isotropic compressible neo-Hookean material.

Basic Equations
Consider an elastic bodyR that is homogeneous and isotrop

relative to an undisturbed reference configuration:0 . A smooth
motionx5x(X) takesR to a deformed equilibrium configuratio
:. The Cauchy stressT in : is

T5a011a1B1a2B2, B5FFT, F5
]x

]X
(1)

where (a0 ,a1 ,a2) are scalar functions of the principal invarian
~I, II , III ! of B, and body forces are neglected. Experimenta
based inequalities~@12#! tend to support the restrictions

a02II a2<0, a11Ia2.0, a2<0. (2)

An adjacent nonequilibrium deformed configuration:* is ob-
tained by superposing a displacementu that is infinitesimal almost
everywhere and depends onx and time. This requires an incre
mental Cauchy stressT85T* 2T, whereT* is the Cauchy stress
in :* . To the first order inH5]u/]x its components in the prin
cipal reference system, i.e.,B5diag$l1

2,l2
2,l3

2% where lk are the
principal stretches, are

Tik8 5l i j8 Hi j d ik1m ik8 Hik1mki8 Hki , (3a)

l ik8 5l iklk
2, (3b)

m ik8 5m iklk
2 (3c)

Here (l ik8 ,m ik8 ) are the generalized Lame’ constants, i.e., they
independent of time and position,d ik is the Kronecker delta,
( i ,k)5(1,2,3) and the summation convention does not apply,

1

2
l ik5

]a0

]lk
2 1l i

2
]a1

]lk
2 1l i

4
]a2

]lk
2 , m ik5mki5a11a2~l i

21lk
2!.

(4)

In : incremental traction conditions on a surface with o
wardly directed normaln can be written in terms of the vector

t~n!5T8n1Tn~n.Hn!2THTn (5)

Because:0 is a homogeneous configuration, the incremental b
ance of linear momentum reduces to~@8#!

div T85rü (6)

wherer is the mass density,~•! denotes time differentiation, and
Cartesian basis is understood. Finally, in terms of the princ
stretches,

I 5l1
21l2

21l3
2, II 5l1

2l2
21l3

2l1
21l2

2l3
2, III 5l1

2l2
2l3

2.
(7)

A Hadamard material can, in view of~1!, be characterized by

a052AIII
dG~ III !

dIII
, a15

1

AIII
~a02b0I !, a25

b0

AIII
(8)

where (a0 ,b0) are material constants such thata02b05m, m is
the shear modulus, andG(1)50. Settingb050 produces the sub
class of compressible isotropic neo-Hookean materials~@9#! and,
as a generalization of a form used in~@13–15#!, we consider

1

m
G5m0S 1

AIII
21D 1mS 1

AIII
21D 2

. (9)

This reduces~8! to the two-parameter model
664 Õ Vol. 69, SEPTEMBER 2002
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III
~2m2m0!2

2mm

III 3/2, a15
m

AIII
, a250. (10)

The dimensionless constants (m0 ,m) are determined as follows
TakeR in :0 to be a cylindrical bar of cross-sectional areaA0 ,
and place it in a deformed equilibrium state: under uniaxial load
P. If the bar axis is aligned with theX1-direction, the Cauchy
stresses are

T115
P

A
, T225T3350, Tik50 ~ iÞk! (11)

where A is the cross-sectional area in:, and uniform stress is
assumed. BecauseX define the principal directions with stretche
l1 and l25l35lT , A5l r

2A0 for homogeneous deformations
andl1511e1 , wheree1 is the axial unit extension, Eq.~1!, ~7!,
~10!, and~11! combine to give

1

m

P

A0
511e12

lT
2

11e1
, lT

61S 2m2m0

11e1
DlT

22
2m

~11e1!2 50.

(12)

These formulas relate a Piola-Kirchoff stress to unit extensi
i.e., the result of the simple extension test~@16#!. Replication of a
homogeneous linear isotropic solid for small deformations
quires that

P

A0
50,

d

de1
S P

A0
D52m~11n! ~e150,lT51! (13)

where n is Poisson’s ratio (0,n,1/2). This is accomplished
when

m051, 2m5
124n

2n21
. (14)

It can be shown that~2! is automatically satisfied when 1/3,n
,1/2, but the condition

AIII .
2m

2m21
(15)

arises for 0,n,1/3. This implies a critical compressive (P,0)
state, but it is noted that even such a state is highly elastic,
AIII .1/2 (n50).

Rapid Fracture: Superposed Infinitesimal Deformations
Now take R in :0 to be an unbounded solid with a close

semi-infinite slit described in the fixed Cartesian basis byX250,
X1,0. The smooth motion

x15l1X1 , x25l2X2 , x35X3 (16)

takesR to the plane-strain equilibrium state: where

T1150, T225s, l351. (17)

Hereo,0 is a specified uniform compressive stress. NowR oc-
cupies an unbounded region with closed slitx250, x1,0 and
(xk ,lk) are principal directions and stretches. For the compre
ible neo-Hookean model~1!, ~7!, ~10!, ~14!, ~16!, and ~17! com-
bine to give the formulas

l25vl1 , v5
s

2m
1A11S s

2m D 2

, l1l25AIII

(18a)

T335mS 1

Av
2

1

v D , Tik50 ~ iÞk! (18b)

that complete the description ofR in :. In (18a)
Transactions of the ASME
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AIII 5~mv!1/3F S 11A12
v

vc
D 1/3

1S 12A12
v

vc
D 1/3G

(19a)
for (1/4,n,1/3,0,v,vc) and (1/3,n,1/2,2m21.0),
while

AIII 52AvA1

3
~122m! cos

1

3
tan21Av

vc
21 (19b)

governs for (1/4,n,1/3,v.vc) and

AIII 52AvA1

3
~122m! cos

1

3 S p2tan21Av

vc
21D

(19c)

holds when (0,n,1/4,v.vc), where

vc5m2S 3

122mD 3

52S 3

4D 3 ~124n!2~2n21!

~3n21!3 . (20)

Equations~19! give for the typical valuesn5(0,1/4,1/3,1/2),
respectively,

AIII 5~v1/3,Av,v1/3,1!. (21)

These results show that this neo-Hookean compressible m
preserves as a limit case for all deformations the incompressib
that arises in a linear isotropic solid whenn51/2. It is noted that
~18!–~21! are valid fors.0 as well.

In view of ~2!–~4! and ~18!, the generalized Lame’ constan
for any superposed infinitesimal deformation are

l1k8 5mS x2
1

v D , l2k8 5m~x2v!, l3k8 5mS x2
1

AIII
D
(22a)

mk18 5
m

v
, mk28 5mv, mk38 5

m

AIII
, x52S 1

v
1

m

III 3/2D
(22b)

where k5(1,2,3). Somel ik8 take on negative values unless
restriction on pre-stress is imposed, e.g.,

s,0~n50!, s,
m

&
S n5

1

4D ,

s,
2m

)
S n5

1

3D , s,`S n5
1

2D . (23)

The most severe restriction, forn50, is of no consequence in thi
analysis. Settingv51 (s50) in ~22! in view of (18a) appropri-
ately yields the isotropic result~@7#!

m ik8 5m, l ik8 5
2mn

122n S 0,n,
1

2D . (24)

The superposed infinitesimal deformation is triggered when sh
forcesS.0 ~line loads in thex3-direction! are applied to both slit
surfaces. They translate in the positivex1-direction at a constan
speedv, and cause the slit to extend as a shear crack in
direction. A steady-state dynamic situation is achieved in wh
the crack speed is alsov, and the forcesS remain a fixed distance
L from the edge. This is depicted schematically in Fig. 1, wher
is noted that, for simplicity, the coordinates~x, y, z! replace
(x1 ,x2 ,x3), respectively, and translate with the crack edge. T
superposed deformation is one of plane strain and antisymm
Therefore, only the half-spacey.0 need be considered, subje
to, in light of ~5!, the conditions

T228 50; (25a)

T218 52Sd~x1L ! ~x,0!, (25b)
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u150 ~x.0! (25c)

for y50. Hered~ ! is the Dirac function. In light of~2! and~22!,
the relevant stress-strain equations are

1

m
T118 5~x1v!u1, x1~x2v!u2,y (26a)

1

m
T228 5S x2

1

v Du1, x1S x1
1

v Du2,y (26b)

1

m
T218 5

1

m
T128 5vu1,y1

1

v
u2, x . (26c)

Here ( ),a signifies differentiation with respect toa. In the steady
state the superposed displacements (u1 ,u2) depend on~x, y! only,
and time derivatives in the inertial frame can be written
2v( ),x . In view of ~6! and ~26!, then, the field equations iny
.0 are

S x1
1

v
2c2Du1, xx1vu1,yy1xu2, xy50 (27a)

xu1, xy1S 1

v
2c2Du2, xx1

1

v
u2,yy50 (27b)

wherec is the dimensionless crack speed

c5
v
v r

, v r5Am

r
. (28)

Equations~26! and ~27! exhibit the typical~@8,9#! anisotropy in-
duced inR by pre-stress. In addition,uk should be bounded a
Ax21y2→`, and should be finite and continuous everywhe
except perhaps aty50, x52L.

Solution to Related Problem
Consider now the related problem of an unbounded solid g

erned by~26!–~28!, but with the slit replaced by an extending lin
of displacement discontinuities. Thus, two half-spaces (y.0,
y,0) are treated, subject to the unmixed matching conditions

@T218 #5@T228 #50, @u1#5U~x!, @u2#5V~x! (29)

for y50, where@ # signifies a discontinuity as thex-axis is crossed
from y502 to y501. The functions (U,V)[0 for x.0 and
vanish continuously atx50. The system~26!–~29! can be solved
by use of the bilateral Laplace transform~@17#! and, by following
the procedure of@13,15#, the results

Fig. 1 Schematic of growing shear crack
SEPTEMBER 2002, Vol. 69 Õ 665
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u15
1

p E
C

U~ t !dt

c21e F vay

~ t2x!21a2y22
K

2

by

~ t2x!21b2y2G
1

1

2p E
C

V~ t !dt

c21e FK1

a

t2x

~ t2x!21a2y2

2bS v1
1

v D t2x

~ t2x!21b2y2G (30a)

u25
1

p E
C

U~ t !dt

c21e F va~ t2x!

~ t2x!21a2y22
K

2b

t2x

~ t2x!21b2y2G
1

1

p E
C

V~ t !dt

c21e F S v1
1

v D by

~ t2x!21b2y22
K1ay

~ t2x!21a2y2G
(30b)

are obtained fory.0 for subsonic values ofc. In ~30! the
definitions

e5
s

m
5v2

1

v
, K5v1

1

v
2c2, K15

2

v
2c2 (31a)

b5
1

Av
Acb

22c2, a5
1

Ax1v
Aca

22c2, cb5
1

Av
,

ca5Ax1
1

v
.cb (31b)

hold, andC denotes integration over the real interval~2`,0!. The
quantities (cb ,ca) are, respectively, the rotational and dilatation
wave speeds associated with thex-direction, nondimensionalized
with respect tov r . The dimensionless parameters~a, b! are real
and positive, and indicate, therefore, that the subsonic case c
sponds to 0,c,cb .

For the transonic and supersonic casescb,c,ca and c.ca ,
respectively,b and~b, a! are imaginary. Therefore, the branch cu
Im(c)50,uRe(c)u.cb and Im(c)50,uRe(c)u.ca are introduced for
(b,a), respectively, such that Re(b,a)>0 in the cutc-plane. Then,
for the transonic case,~30! are replaced fory.0 by

u15
1

p E
C

dt

c21e FU~ t !vay1
K1

2a
V~ t !~ t2x!G 1

~ t2x!21a2y2

2
1

2~c21e! FKU~xb!1bS v1
1

v DV~xb!G (32a)

u25
1

p E
C

dt

c21e FvaU~ t !~ t2x!2
K1

2
V~ t !ayG 1

~ t2x!21a2y2

1
1

2~c21e! FK

b
U~xb!2S v1

1

v DV~xb!G (32b)

For the supersonic case, finally, the results

u15
1

c21e FvU~xa!2
K

2
U~xb!G

2
1

2~c21e! FK1

a
V~xa!1bV~xb!G (33a)

u25
1

c21e FvaU~xa!1
K

2b
U~xb!G

1
1

2~c21e! F S v1
1

v DV~xb!2K1V~xa!G (33b)

hold. In ~32! and ~33!,
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b5
1

Av
Ac22cb

2, a5
1

Ax1v
Ac22ca

2 (34a)

xb5x1byP~2`,0!, xa5x1ayP~2`,0! (34b)

and it is understood that nonintegral terms do not appear un
their arguments lie in the intervals specified by (34b). These
terms, therefore, represent signals with plane fronts that rad
from the displacement discontinuity regiony50, x,0.

Analogous expressions fory,0 can be obtained, and it is note
that whenV[0, these counterparts and~30!, ~32!, and ~33! ex-
hibit antisymmetry with respect toy50, and satisfy (25a,c).
Thus, if U is interpreted as the slip~relative tangential displace
ment! of the crack faces, and chosen so that (25b) is also satis-
fied, then ~30!–~34! comprise the solutions for the superpos
infinitesimal deformations in the crack problem. The subso
case is considered first.

Subsonic Case
Application of (26b) to ~30! with V[0 and use of the standar

~@18#! result

k

~ t2x!21k2 →pd~ t2x!~k501 ! (35)

give the formulas

1

m
T218 5

R

2b~c21e!

1

p E
C

dU

dt

dt

t2x
, (36a)

R52~v211!ab2K1K (36b)

for y50 in the subsonic (0,c,ch) case. The dimensionles
quantity R is similar in form to a standard Rayleigh functio
~@5,13,14#! for the linear isotropic solid and reduces to that for
when v51 (s50). It can be shown thatR has the rootsc
56cR , where 0,cR,cb , for any 0,v,1 (s,0). That is,
cRv r is the Rayleigh wave speed associated with thex-axis. The
quantity R also vanishes whena5b, i.e., c21e50, but ~36a!
remains finite because the termc21e also appears in its denomi
nator. Indeed, it can be shown that~30a,b! for y.0 exhibit no
roots or singular behavior whena5b due to the same cancellatio
effect.

For simplification, therefore,@14# is followed and the
factorizations

R5S 11
v

x Dv~a2b!R8, (37a)

a2b5
x~c21e!

v~x1v!~a1b!
(37b)

introduced, where the dimensionless quantity

R85c2~a1b!2
2~v211!x

v~x1v!
b (38)

has only the rootsc56cR . It is, therefore, the effective Rayleigh
function, andcR can be obtained by rationalizing the equatio
R850 into a cubic inc2 and then discarding the extraneous roo
An alternative approach~@19#! gives a formula that is analytic to
within a simple quadrature:

cR5
1

vG0

A 2~v211!xAv

~x1v!~Av1Ax1v!
(39a)

ln G05
1

p E
cb

ca dt

t
tan21A11

v

x
At22cb

2

ca
22t2

3F 2

t2 S v1
1

v D x

x1v
21G . (39b)
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Use of (36a) and ~37! in (25b) produces the singular integra
equation

R8

2b~a1b!

1

p
~P!E

C

dU

dt

dt

t2x
52

S

m
d~x1L ! ~x,0!. (40)

Here ~P! denotes Cauchy principal value integration. That~40!
defines the gradient ofU is of no consequence; the steady-sta
analysis gives displacements only to within an arbitrary rig
body motion. Solutions to equations of the form~40! are well
known ~@20#!, and, in particular, the procedure used in@21# gives

dU

dx
5

2b~a1b!

pR8

S

m

AL

A2x~x1L !
~x,0!. (41)

It can be shown that the integration of~41! appropriately vanishes
as x→2`. Substitution of~41! into ~36a! and use of~37! and
Cauchy residue theory~@21#! gives

T218 5
S

p

AL

Ax~x1L !
~x.0! (42)

as the shear traction on the crack plane ahead of the crack.
~41! and ~42! available, the fracture energy release rate~per unit
of length in thez-direction! Ėv can be, after@1#, derived as

m

n r
Ėv52

2cb~a1b!

pLR8
S2. (43)

It can be shown thatR8,0 only for 0,c,cR ; that is, a positive
release rate arises only in this speed range. Thus, the Ray
speedcRv r emerges, as in a linear isotropic solid~@1#!, as a limit
speed for subsonic nonbranching shear crack growth.

TransonicÕSupersonic Cases
Use of ~32!, (26b), and~35! reduces (25b) to the equation

v211

c21e

a

p
~P!E

C

dU

dt

dt

t2x
1

K1K

2b~c21e!

dU

dx
52

S

m
d~x1L !

~x,0!
(44)

for the transonic rangecb,c,ca . In this instance, two case
emerge: Forcb,c,c2 or c1,c,ca , where

c25Av1
1

v
, c15A2

v
,

&,c2,c1~s,0!, c65&~s50! (45)

use of~37b! and the procedure in@21# give

dU

dx
52

2bv

D

S

m FK1Kd~x1L !12~v211!
ab

p S 2x

L D y 1

x1LG
~x,0! (46a)

T218 5
2

p
~v211!abA v

~c21e!D
SS x

L D y 1

x1L
~x.0!.

(46b)

The dimensionless eigenvaluey and dimensionless positive quan
tity D are given by

y5
1

p
tan21

K1K

2~v211!ab
2

1

2 S 2
1

2
,y ,0D (47a)

D511F4x~v211!2

x1v
2322v2Gb22v2~213v2!b42v4b6

(47b)

For c2,c,c1 , however, the signs of~46! are reversed, and
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y5
1

2
1

1

p
tan21

K1K

2~v211!ab S 0, y ,
1

2D . (48)

It is known ~@2#! that standard singular~brittle! crack edge
behavior—and therefore, a finite fracture energy release rate—
linear isotropic solid occur for transonic crack growth only wh
v5&v r . The results~45!–~48! show that the compressive pre
stress produces two such speeds. Whenv5c2v r , (46b) reduces
to the subsonic form~42! and

dU

dx
52

2v

v211
Ax1v

x2v

S

mp

AL

A2x~x1L !
~x,0! (49a)

m

v r
Ėv5

2Av

pAv211
Ax1v

x2v

S2

L
.0. (49b)

For v5c1v r , ~42! again arises but now

dU

dx
52

1

Av
A x1v

vx21

S

mp

AL

A2x~x1L !
~x,0! (50a)

m

v r
Ėv5

&

pv
A x1v

vx21

S2

L
.0. (50b)

For the supersonic casec.ca , ~33! indicates that there will be no
stress ahead of the crack, and no energy release rate. Thus
case will not be considered further; a study of the case in a t
sient situation is given in@22#.

Crack Surface Friction
When fracture occurs, frictional resistance can arise on

newly formed surfaces. To incorporate this effect, we assume t
while frictionless slip occurs generally, a finite region governed
Coulomb friction trails the crack edge. Because the superpo
infinitesimal deformation is antisymmetric, only the compress
pre-stresss,0 provides a normal force on the crack faces. T
governing equations for the deformations remain unchanged u
introduction of the friction zone, except that (25b) is replaced by

T218 52Sd~x1L !2gsH~x1 l !~x,0!. (51)

Here H( ) is the step function, 0, l ,L and g(0,g,1) is the
dimensionless friction coefficient. Whenx,0, it is noted that the
step function in~51! is, in fact, the integral of the Dirac function
with respect toL over the interval (0,l ). This implies that the
solutions for~51! can be obtained by adding to the frictionle
results just presented a second set of expressions that follow
those results by replacingS with gs, and performing the afore-
mentioned integration. Thus, for allowable (0,c,cR) subsonic
crack growth,~41! and ~42! for y50 become

dU

dx
5

2b~a1b!

pR8m F S SAL

x1L
22gsAl D 1

A2x
1gs lnUAl 1A2x

Al 2A2x
UG

~x,0! (52a)

T218 5
1

p F S SAL

x1L
22gsAl D 1

Ax
12gs tan21A l

xG ~x.0!

(52b)

and ~43! is replaced with

m

v r
Ėv52

2cb~a1b!

pR8 S S

AL
22gsAl D 2

. (53)

Because (S,s),0, ~52! and ~53! show that friction enhances
crack edge fields and the energy release rate. Although thegs-
terms do not decay as strongly as theS-terms, the integral of
(52a) still vanishes asx→2`. Analogous results hold for the
two transonic cases (c5c6); in particular,
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v r
Ėv5

2Av

pAv211
Ax1v

x2v S S

AL
22gsAl D 2

~c5c2!

(54a)

m

v r
Ėv5

&

pv
A x1v

vx21 S S

AL
22gsAl D 2

~c5c1!. (54b)

Full Fields
Differentiation of ~30! and ~32!, substitution of~52! and its

transonic counterpart, and use of Cauchy residue theory in
manner of@13,15,21# gives fory.0,0,c,cR

u1,x5
2b~a1b!

~c21e!R8

&S

mp Fv
Sa~x1L !1Caay

~x1L !21a2y2

2
K

2

Sb~x1L !1Cbby

~x1L !21b2y2 G2
2b~a1b!

~c21e!R8

&gs

mp Fv~Saja

1Cafa!2
K

2
~Sbjb1Cbfb!G (55a)

u2,x5
2b~a1b!

~c21e!R8

&S

mp Fav
Saay2Ca~x1L !

~x1L !21a2y2

1
K

2b

Cb~x1L !2Sbby

~x1L !21b2y2 G2
2b~a1b!

~c21e!R8

&gs

mp

3Fav~Safa2Caja!1
K

2b
~Cbjb2Sbfb!G . (55b)

Here the definitions~31! and

~Cq ,Sq!5
AAx21q2y26x

Ax21q2y2
(56a)

jq5 lnA~x1 l !21q2y2

x21q2y2 , fq5tan21
x1 l

qy
2tan21

x

qy
(56b)

hold, whereq5(a,b). For the transonic casec5c2 the results
for y.0 are

u1,x5
v

v211

&

mpa Fgs~Saja1Cafa!2S
Sa~x1L !1Caay

~x1L !21a2y2 G
(57a)

u2,x5
v

v211

&

mpa FS
Ca~x1L !2Saay

~x1L !21a2y2 1gs~Safa2Caja!G
(57b)

a5Ax2v

x1v
. (57c)

For the transonic casec5c1 the results fory.0 are
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theu1,x5
v

v211

&

mpa Fgs~Saja1Cafa!2S
Sa~x1L !1Caay

~x1L !21a2y2 G
1

e

2~v211!

1

mpa F S SAL

xb1L
2gsAl D 1

A2xb

1gs lnUAl 1A2xb

Al 2A2xb
UG (58a)

u2,x5
v

v211

&

mpa Fgs~Safa2Caja!1S
Ca~x1L !2Saay

~x1L !21a2y2 G
2

e

2~v211!

1

mpa F S SAL

xb1y
2gsAl D 1

A2xb

1gs lnUAl 2A2xb

Al 1A2xb
UG (58b)

a5A vx21

v~x1v!
, b5

1

v
, xb5x1byP~2`,0!.

(58c)

It is understood that the terms in~58a,b! with coefficiente appear
only when the argumentxb lies in the range specified by~58c!. In
view of the general form~32! and discussions of the linear isotro
pic case~@1,2#!, such behavior might be expected. However, su
terms do not appear in~57!, nor do they arise when~57! and~58!
coalesce to the linear isotropic case (c5&) in the limit v
51(s50). That is, only in the transonic casec5c1 under pre-
stress does a signal with a plane front actually radiate from
growing crack.

Pre-stress Effects: Some Calculations
The prominence of the dimensionless stretch ratiov in the ex-

pressions for the superposed infinitesimal deformations by it
suggests the influence of the compressive pre-stress on s
crack growth. To lend some quantitative aspect to this obse
tion, nondimensionalized rotational (cb) and dilatational (ca)
speeds defined in~31b! are given in Table 1 for various values o
e5s/m<0 and Poisson’s ration5(0,1/4,1/3,1/2). In Table 2,
values of the nondimensionalized Rayleigh speed (cR) defined in
~39! are given. As already noted, the compressible neo-Hook
model preserves as a limit case the small-strain incompressib
that occurs whenn51/2, soca is unbounded at this value. Bot

Table 1 Dimensionless wave speeds for different pre-stress
levels

s/m cb ca (n50) ca (n51/4) ca (n51/3) ca (n51/2)

21.0 1.2721 1.799 2.2033 2.5442 `
20.5 1.1317 1.6005 1.9602 2.2634 ’’
20.3 1.0776 1.5239 1.8664 2.1552 ’’
20.1 1.0253 1.45 1.7759 2.0506 ’’

20.05 1.0126 1.432 1.7538 2.0252 ’’
0 1.0 1.4142 1.6818 2.0 ’’

Table 2 Dimensionless Rayleigh speeds for different pre-
stress levels

s/m cR (n50) cR (n51/4) cR (n51/3) cR (n51/2)

21.0 1.1623 1.1901 1.1984 1.2124
20.5 1.0114 1.0481 1.0588 1.0773
20.3 0.9543 0.9947 1.0063 1.0266
20.1 0.9001 0.9373 0.9568 0.9785

20.05 0.887 0.9315 0.9444 0.9668
0 0.874 0.9194 0.9325 0.9553
Transactions of the ASME
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tables show that all three speeds increase with both compre
pre-stress level and Poisson’s ratio. The Rayleigh speed incre
imply that subsonic planar nonbranching crack growth can oc
at higher rates under compressive pre-stress.

While the effects are small in Tables 1 and 2 for pre-str
levels that would be considered critical~@7#! in a linear elastic
body,e.g., cR for n50 increases from 0.874 to 0.887 at 5% of t
shear modulus, they are, nonetheless, clear-cut.

For insight into fracture mechanics, we examine the dimens
less ratio

r 5
Ėv

Ė1

(59)

of the release rate when pre-stress is present to the rate when
absent (v51). For allowable (0,c,cR) subsonic crack growth
~53! governs and, as already noted, friction enhances this rate
focus on pre-stress, we setg50 so thatr now depends only on
(v,c), i.e., (s,v). Tables 3~a–d! give r for Poisson’s ration
5(0,1/4,1/3,1/2) for values ofc at different compressive pre
stress levels. Thec-values are sub-Rayleigh for all the pre
stresses. At low subsonic crack speeds, the release rate is g
ally greater (r .1) when compressive pre-stress is accounted
For speeds near the Rayleigh levels~Table 1!, however, pre-stress
actually decreases (r ,1) the release rate.

Table 3 „a… Ratio of energy release rates with no friction and
sÕmÄÀ1.0

c r (n50) r (n51/4) r (n51/3) r (n51/2)

0.05 1.2608 0.9726 1.0226 1.1707
0.1 1.2587 0.9711 1.0215 1.17
0.3 1.2339 0.9548 1.008 1.1615
0.5 1.173 0.9121 0.9724 1.1383
0.7 1.63 0.7927 0.8749 1.0699
0.9 0.4551 0.2036 0.354 0.6731

Table 3 „b… Ratio of energy release rates with no friction and
sÕmÄÀ0.5

c r (n50) r (n51/4) r (n51/3) r (n51/2)

0.05 1.1612 0.9926 1.0213 1.1063
0.1 1.1594 0.9918 1.0206 1.106
0.3 1.1373 0.9823 1.0131 1.1021
0.5 1.0833 0.9558 0.9923 1.0905
0.7 0.9573 0.875 0.927 1.0504
0.9 0.4398 0.2658 0.4323 0.7259

Table 3 „c… Ratio of energy release rates with no friction and
sÕmÄÀ0.1

c r (n50) r (n51/4) r (n51/3) r (n51/2)

0.05 1.036 0.9997 1.0058 1.0244
0.1 1.0342 0.9994 1.0057 1.0243
0.3 1.0129 0.9974 1.0041 1.0237
0.5 0.9618 0.9911 0.9994 1.0215
0.7 0.8488 0.9683 0.9821 1.0123
0.9 0.4183 0.534 0.7011 0.8789

Table 3 „d… Ratio of energy release rates with no friction and
sÕmÄÀ0.05

c r (n50) r (n51/4) r (n51/3) r (n51/2)

0.05 1.0178 0.9999 1.003 1.0123
0.1 1.016 0.9998 1.003 1.0123
0.3 0.9948 0.9988 1.0022 1.012
0.5 0.9437 0.9956 0.9998 1.0109
0.7 0.8319 0.9836 0.9907 1.0061
0.9 0.4176 0.6792 0.8118 0.929
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In the transonic cases,~54! governs, and~62! with g50 must
now be interpreted as a ratio of rates at different crack spe
Insight is still possible: Tables 4~a,b! give r for n5(1/4,1/3,1/2)
for ~54! and the limit case (v51,c5&) and various compressive
pre-stresses. The release rates for the lower crack speed (c5c2)
are seen to be less than the limit case rates. The higher (c5c1)
speed release rates, however, exceed them. In both tables
pre-stress effect generally increases withn.

The casen50 is somewhat different: In view of~18!–~20! and
~22!, ~54! blows up whenv51, n50. That is, the single transoni
crack speed in linear isotropic solid~@1#! is associated with an
unbounded energy release rate. For 0,v,1(s,0), (54b) gives
the same result, i.e., the higher transonic crack speed (c5c1) has
an unbounded release rate whenn50. However, whenn50 in
(54a),

m

n r
Ėv52A2

m

s
vS S

AL
22gsAl D 2

~c5c2!. (60)

In this case, the compressive pre-stress allows a finite energ
lease rate.

Some Observations
This article considered dynamic fracture under shear of an

bounded isotropic compressible neo-Hookean material initia
subjected to a uniform compressive pre-stress. The material r
cated linear isotropic response at small deformations, but
served as a limit case for all deformations the incompressib
that arises in the linear case when Poisson’s ration51/2. The
crack was semi-infinite, and fracture-driven by shear forces m
ing at a constant speed on both surfaces. A dynamic steady-
and plane strain were assumed, so that the crack edge mov
the same speed, with the forces at a fixed distance from the e

The problem was treated as the superposition of~essentially!
infinitesimal deformations triggered by fracture upon the fin
deformations due to the compressive pre-stress. Exact analy
solutions were obtained for both fields. The infinitesimal resu
displayed the expected anisotropy induced by pre-stress, and
valid for any constant crack/load speed—subsonic, transonic,
personic. These speed ranges varied with pre-stress: the rotat
and dilatational speeds, as well as the Rayleigh speed, incre
from their classical values. A smooth crack surface was treate
detail, and the corresponding results for a finite zone of Coulo
sliding friction at the crack edge were obtained by simple quad
ture. These two cases showed that friction enhances the frac
energy release rate.

For subsonic crack growth, the Rayleigh speed served, as in
linear isotropic case, as a limiting speed for planar nonbranch
shear crack growth. To examine the effects of pre-stress, fric
was neglected, and ratios of energy release rates with and in

Table 4 „a… Ratio of energy release rates when cÄcÀÌ&

s/m c2 r (n51/4) r (n51/3) r (n51/2)

21.0 1.4954 0.6625 0.7601 0.9457
20.5 1.4358 0.7791 0.8559 0.985
20.3 1.4221 0.8475 0.9051 0.9945
20.1 1.4151 0.7395 0.9647 0.9993

20.05 1.4144 0.9683 0.9818 0.9998

Table 4 „b… Ratio of energy release rates when cÄc¿Ì&

s/m c1 r (n51/4) r (n51/3) r (n51/2)

21.0 1.799 1.8341 1.8927 2.0583
20.5 1.6006 1.3518 1.3769 1.4494
20.3 1.5239 1.1901 1.2102 1.2512
20.1 1.45 1.0607 1.065 1.0779

20.05 1.432 1.0247 1.0319 1.0382
SEPTEMBER 2002, Vol. 69 Õ 669
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absence of pre-stress calculated for a given crack speed at va
values of Poisson’s ratio. Pre-stress was found, in general, to
hance release rates at low crack speeds, but to decrease it at
critical ~Rayleigh! values. The results indicated that a finite ener
release rate does not, in general, arise for supersonic crack sp

In a linear isotropic body, an energy release rate exists onl
one transonic crack speed. The results presented here showe
two such speeds exist under pre-stress: both speeds excee
isotropic value, vary with pre-stress, and take on that value w
pre-stress vanishes. It was also found that only the higher all
able transonic speed under pre-stress do signals with plane f
actually radiate from the growing crack.

The energy release rates at the two transonic speeds pos
under pre-stress were compared with those for the single lin
isotropic limit case. For Poisson’s ratio~1/4, 1/3, 1/2! the rates for
the larger transonic speed under pre-stress exceeded the iso
values, while the lower possible speed rates lay below th
When Poisson’s ratio vanishes, the linear isotropic limit ca
gave, in fact, an unbounded energy release rate, and the
result occurs at the higher transonic crack speed possible
pre-stress. However, the lower possible transonic speed gave
values that became unbounded only in the limit when pre-st
vanished.

In summary, then, these results suggest that dynamic s
crack growth can be noticeably affected by a compressive
stress when the material is highly elastic. The existence of
possible transonic crack speeds under pre-stress suggests a
cation. That said, the lower-speed result is more similar to
linear isotropic limit case in some respects, and allows a fin
energy release rate when Poisson’s ratio vanishes. However
present results are a first step that allows a direct comparison
dynamic fracture results based on classical fracture mecha
~@1#!. The present analysis, indeed, serves as the basis for a c
sive zone model~@6#!, that allows, of course, the superposed d
formations to be infinitesimal everywhere. Moreover, results
the use of nonlinear stress strain laws in such zones~@23,24#! are
being included.
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On an Elastic Circular
Inhomogeneity With Imperfect
Interface in Antiplane Shear
We develop a rigorous solution to the antiplane problem of a circular inhomogen
embedded within an infinite isotropic elastic medium (matrix) under the assumptio
nonuniform remote loading. The bonding at the inhomogeneity/matrix interface is
sumed to be homogeneously imperfect. We examine both the case of a single c
inhomogeneity and the more general case of a three-phase circular inhomogeneity.
eral expressions for the corresponding complex potentials are derived explicitly in
the inhomogeneity and in the surrounding matrix. The analysis is based on com
variable methods. The solutions obtained demonstrate the effect of the prescribed
uniform remote loading on the stress field within the inhomogeneity. Specific solution
derived in closed form which are verified by comparison with existing solutions.
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1 Introduction
Problems involving elastic inhomogeneities with imperfe

bonding at the inhomogeneity/matrix interface~imperfect inter-
face! are receiving an increasing amount of attention in the lite
ture ~see, for example, Ru and Schiavone@1# for an extensive
literature review!. Interest in these problems is motivated main
by a desire to study interface damage in composites~for example,
debonding, sliding, and/or cracking across an interface! and its
subsequent effect on the effective properties of composites.

One of the more widely used models of an imperfect interfa
~often referred to as the homogeneously imperfect interface! is
based on the assumption that tractions are continuous but
placements are discontinuous across the interface. More prec
jumps in the displacement components are assumed to be pr
tional ~in terms of ‘‘spring-factor-type’’ interface parameters! to
their respective interface traction components. Under these
sumptions, Hashin@2# has examined the case of a spherical inh
mogeneity imperfectly bonded to a three-dimensional matrix. T
analogous problem for plane deformations has been investig
by Gao@3#. In both these cases, the remote loading is assume
be uniform. This assumption allows the authors to draw dir
comparisons between their results and the classical results de
for analogous problems under the perfect bonding assump
~see, for example, Eshelby@4,5# and Ru and Schiavone@6#!.

In this paper we derive rigorous solutions of the problem as
ciated with a circular elastic inhomogeneity embedded within
infinite matrix in antiplane shear when the interface is homo
neously imperfect, under the more general assumption of non
form remote loading. Specifically, we consider the case in wh
the remote loading is an arbitrary-order polynomial in the co
plex variable describing the matrix. The solution of this proble
is extremely important in that, essentially, it leads to the solut
of the case where the remote loading is characterized by any
tinuous, yet otherwise arbitrary function of the complex varia
in the matrix. This statement is based on the well-known re
from the theory of functions~Weierstrass! which states that any
continuous function in a bounded domain can be uniformly

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 20, 20
final revision, November 19, 2001. Associate Editor: H. Gao. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, De
ment of Mechanics and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication in the paper itself in the ASME JOURNAL OFAPPLIEDMECHANICS.
Copyright © 2Journal of Applied Mechanics
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proximated by a polynomial. This result applies here since,
practice, the matrix is a bounded domain with the remote load
corresponding to the exterior~to the inhomogeneity! field some
‘‘relatively large’’ distance from the inhomogeneity. Cons
quently, the remote loading is always prescribed in a boun
domain even though, mathematically, this is usually modeled
an inhomogeneity/infinite matrix system with remote loading p
scribed ‘‘at infinity.’’ Hence, the results in this paper will allow fo
the approximate calculation of stress fields corresponding t
prescribed non-uniform remote loading characterized by any c
tinuous, yet otherwise arbitrary, function in the presence of
imperfectinhomogeneity-matrix interface.

Applications of the results in this paper are numerous. For
ample, the single inhomogeneity/matrix model with imperfect
terface can be used to predict the mechanical properties of fi
reinforced composites~see, for example, Hashin@2#, Jun and
Jusiuk @7#, and Gao@3#!. The three-phase elastic inhomogene
model is also of great interest in composite mechanics. For
ample, it arises directly from the study of the interphase la
between the inhomogeneity and its surrounding matrix and it
fers the fundamental solution for the generalized self-consis
method~see, for example, Christensen and Lo@8#, Luo and Weng
@9#, Hashin @10#, and Jun and Jusiuk@7#!. In addition, in the
nuclear industry, various fuels and claddings have oxide coat
~Zirconium oxide on Zirconia! and often the oxide coatings can b
subjected to cracking from residual or imposed stresses. Sim
ily, the design of fuel cells may involve the use of Yttria
Sirconium-oxide layers. In each case, the model of an inhomo
neity surrounded by an imperfect interface or interphase layer~the
three-phase inhomogeneity problem! is an appropriate starting
point in the corresponding mechanical analysis. An example
current interest in electrical engineering is that related to pa
vated interconnects in large scale integrated circuits~see Okaba-
yashi@11#!. Here, the major cause of voiding and failure has be
attributed to the residual stresses induced within the intercon
by thermal mismatch between the line and the surrounding pa
vation and substrate. In this case, an inhomogeneity-matrix m
can be used to model the interconnects~see, for example, Niwa
et al. @12#!.

The formulation of the basic boundary value problem desc
ing the antiplane deformation of an elastic inhomogeneity w
homogeneously imperfect interface is presented in Section 2.
case of a single circular inhomogeneity is discussed in Sectio
Here, we find closed-form solutions which demonstrate the ef
of the nonuniform remote loading on the stress field within t

1;
the
art-
nta
after
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inhomogeneity. In the special case when the remote loadin
assumed to be uniform, we reproduce the result first presente
Ru and Schiavone@1#, which reports a uniform stress field insid
the inhomogeneity, despite the presence of the imperfect interf
In Section 4, we derive closed-form solutions for the analogo
but more general, case involving a three-phase circular inho
geneity. These simple results are significant in that they estab
in the presence of a homogeneously imperfect interface, direct
relationships between the stress field inside the inhomogen
and the prescribed nonuniform remote loading.

2 Formulation

Consider a domain inR2, infinite in extent, containing a single
internal elastic inhomogeneity, with elastic properties differe
from the surrounding matrix. The linearly elastic materials oc
pying the matrix and the inhomogeneity are assumed to be ho
geneous and isotropic with associated shear modulim1 and m2 ,
respectively. At infinity, the prescribed deformation is such t
the elastic antiplane deformationu(x,y) in the matrix satisfies

u~x,y!5Re~PN
`~z!!1o~1!, uzu5x21y2→`, N51,2, . . . ,

where PN
` (z)[(n50

N anzN, the an are given complex constant
~remote stress parameters!, ~x, y! is a generic point inR2 and z
5x1 iyPC. We represent the matrix by the domainS1 and as-
sume that the inhomogeneity occupies a circular regionS2 with
center at the origin and radiusR. The inhomogeneity-matrix inter
face will be denoted by the curveG. In what follows, the sub-
scripts 1 and 2 will refer to the regionsS1 and S2 , respectively,
andua(x,y), a51, 2 will denote the elastic~antiplane! deforma-
tion at the point~x, y! in Sa , respectively.

It is assumed that the circular inhomogeneity is imperfec
bonded to the matrix alongG by the ‘‘spring-layer type’’ interface
referred to in Section 1. The interface condition onG is therefore
given by

b@u12~u21u* !#5m2

]u2

]n
5m1

]u1

]n
, on G (2.1)

wheren is the outward unit normal toG, b is the imperfect inter-
face parameter andu* (x,y) represents the additional displac
ment induced within the inhomogeneity by a uniform~stress-free!
eigenstrain specified below. In accordance with Hashin@2#, we
note that if b50, the condition~2.1! reduces to the case of
traction-free interface while ifb is infinite, ~2.1! corresponds to a
perfectly bonded interface. Consequently, the following bound
value problem describes the antiplane deformation of a circ
inhomogeneity with imperfect interface of the form~2.1! ~see Ru
and Schiavone@6#!.

¹2u150 in S1

¹2u250 in S2

b~u12u2!5m2

]u2

]n
1bu* ~x,y!, m1

]u1

]n
5m2

]u2

]n
on G

(2.2)

u1~x,y!5Re~PN
`~z!!1o~1!, x21y2→`
672 Õ Vol. 69, SEPTEMBER 2002
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Denote byv i(x,y) the harmonic functions conjugate toui(x,y).
Since the external loading is self-equilibrated,v i(x,y) are single-
valued and uniquely determined to within an integration const
and the corresponding complex potentialsf1(z) and f2(z) are
analytic withinS1 andS2 , respectively. Thus,

2ui~z!5f i~z!1f i~z!, s132 is235m if i8~z!, zPSi~ i 51,2!.
(2.3)

Noting that

2
]u2

]n
5f28~z!ein~z!1f28~z!e2 in~z!, zPG (2.4)

whereein(z) represents~in complex form! the outward normal toG
at z, the boundary value problem~2.2! can be written in the fol-
lowing form:

f1~z!5df2~z!1~12d!f2~z!1a@f28~z!ein~z!1f28~z!e2 in~z!#

1u* ~z!, zPG
(2.5)

f1~z!5PN
`~z!1o~1!, uzu→`.

Here

a[
m2

2b
>0, d[

m11m2

2m1
.

1

2
, u* 5vz1vz (2.6)

andv is a known~complex! constant determined by the uniform
eigenstrain given in the circular inhomogeneity. Without loss
generality, we have assumed that the origin of coordinates
been chosen such that the rigid-body displacement at infinit
zero.

3 Single Circular Inhomogeneity With
Homogeneously Imperfect Interface

Consider then, a single circular inhomogeneity with homog
neously imperfect interface characterized by the parametera ~or
b!. In this case, we have

Rein~z!5z, zPG

so that the interface condition~2.5! can be written as

f1~z!1~d21!f2S R2

z D2a
R

z
f28S R2

z D2
v̄

z
R2

5df2~z!1a
z

R
f28~z!1vz, zPG. (3.1)

SinceS2 is a circular region, by symmetric continuation~see, for
example, England@13#!, f2(R2/z) and f28(R

2/z) are analytic in
S1 . Consequently, the right-hand side of~3.1! is analytic inS2 and
the left-hand side of~3.1! is analytic in S1 , except at infinity
where the left-hand side of~3.1! has the asymptotic behavior

PN
`~z!1~d21!f2~0!, uzu→`.

Define the functionf (z) as follows:
f ~z!55
f 1~z!5df2~z!1a

z

R
f28~z!1vz, zPS2

f 1~z!5 f 2~z!, zPG,

f 2~z!5f1~z!1~d21!f2S R2

z D2a
R

z
f28S R2

z D2
v̄

z
R2, zPS1 .
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It is clear that f (z) is entire in the domainD5S1øGøS2
~which does not include the point at infinity!. It follows from
Liouville’s theorem and the asymptotic behavior off 2(z) that
f (z)5PN

`(z)1(d21)f2(0), zPD. In particular,

df2~z!1a
z

R
f28~z!1vz5PN

`~z!1~d21!f2~0!, zPS2 .

Solving this first-order ordinary differential equation forf2 and
using the notationf2

(N) to denote the stress functionf2 for each
N51,2,3, . . . , leads to

f2
~N!~z!5

d21

d Fa0~d21!1ā0d

2d21 G2
zv

d1
a

R

1
R

a (
i 50

N
~21! izi

S dR

a D¯S dR

a
1 i D

di PN
`~z!

dzi , zPS2

(3.2)

5
d21

d Fa0~d21!1ā0d

2d21 G2
zv

d1
a

R

1
R

a (
i 50

N
~21! izi

S dR

a D¯S dR

a
1 i D (

j 50

N2 i

aN2 j

3
~N2 j !!

~N2 j 2 i !!
zN2 i 2 j

which demonstrates the variation of the stress functionf2
(N) ~and

hence, through~2.3!, the stress field! inside the inhomogeneity
with the prescribed remote loading of orderN. More precisely, the
stress field inside the inhomogeneity is of the same orderN
21) as the prescribed remote loading.

For example, in the caseN51 ~which, from ~2.3!, corresponds
to uniform remote loading!, we obtain

f2
~1!~z!5

a0d1ā0~d21!

2d21
1

~a12v!z

d1
a

R

, zPS2 , (3.3)

which, from ~2.3!, agrees with the result established in Ru a
Schiavone@1# that the stress field inside the inhomogeneity
uniform. ~The author notes that the result in Ru and Schiavone@1#
mistakenly omits the contribution of the constanta0 to f2

(1)(z).
This, however, does not affect the expression for the stress
inside the inhomogeneity.! This result is in sharp contrast to th
results obtained by Hashin@2# and Gao@3# for the corresponding
problems in three-dimensional and plane elasticity, respectiv
where, in each case, it was shown that, in the case of a hom
neously imperfect interface, under the assumption of uniform
mote loading, the stress field inside the inhomogeneity is non
form.

In the caseN52 ~which, from ~2.3! corresponds to linear re
mote loading!, we obtain from~3.2! that

f2
~2!~z!5f2

~1!~z!1a2z2
R

aS dR

a
12D , zPS2 ,

which corresponds to a linear stress field inside the inhomog
ity.

The stress field in the surrounding matrixS1 can be calculated
for any value ofN from the equation
Journal of Applied Mechanics
(

d
is

eld
e

ely,
ge-

re-
ni-

ne-

f ~z!5PN
`~z!1~d21!f2~0!, zPS1

or

f1~z!5~12d!f2S R2

2 D1a
R

z
f28S R2

z D1
v̄

z
R21PN

`~z!

1~d21!f2~0!, zPS1 . (3.4)

It should be noted that~3.2! and ~3.4! can also be derived using
the method of series.

4 A Three-Phase Circular Inhomogeneity
The results obtained in Section 3 for a single circular inhom

geneity are easily extended to the case of a three-phase cir
inhomogeneity with homogeneously imperfect interface leading
a much stronger result~The solution of the three-phase elast
inhomogeneity problem provides the ‘‘fundamental solution’’ f
the generalized self-consistent method~see, for example, Chris
tensen and Lo@8# Luo and Weng@9#, Hashin@10#, and Jun and
Jusiuk@7#! in the mechanics of composite materials!. To see this,
consider the following.

Suppose there is an intermediate annular regionS0 ~with shear
modulusm0 and outer radiusR1! between the circular regionS2
and the matrixS1 . Assume thatS0 is perfectly bonded toS1 but
imperfectly bonded toS2 with interface parameterb. Define the
following quantities:

d1[
m11m0

2m0
.

1

2
, d2[

m01m2

2m0
.

1

2
, a[

m2

2b
. (4.1)

The corresponding antiplane problem requires that we find th
analytic functionsf i(z)( i 50,1,2) in the domainsSi , respec-
tively, satisfying the following conditions:

f0~z!5d1f1~z!1~12d1!f1~z!, uzu5R1

f0~z!5d2f2~z!1~12d2!f2~z!1aF z

R
f28~z!1

R

z
f28~z!G

1u* , uzu5R (4.2)

f1~z!5PN
`~z!1o~1!, uzu→`.

To solve this problem, let

f1~z!5PN
`~z!1(

n51

`

Xnz2n, f2~z!5Y01(
n51

`

Ynzn (4.3)

whereXn , Yn (n51,2̄ ) andY0 are complex coefficients to be
determined. From the first interface condition~4.2!, we obtain
f0(z) in terms off1(z) as follows:

f0~z!5d1F PN
`~z!1(

n51

`

Xnz2nG
1~12d1!F P̄N

`S R1
2

z D 1(
n51

`
Xnzn

R1
2n G . (4.4)

Substituting~4.3! and ~4.4! into the second interface conditio
~4.2!, and equating coefficients of like powers ofz, the coeffi-
cientsXn andYn are found to be

Y05

d1a01~12d1!ā02
~12d2!

d2
@d1ā01~12d1!a0#

d22
~12d2!2

d2

,

(4.5)
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Xn5

d1ān

d21
an

R

@~12d2!R2n1anR2n21#2~12d1!ānR1
2n

d12
~12d1!

R1
2n

@~12d2!R2n1anR2n21#

d21
an

R

,

(4.6)

Yn5
1

S d21
an

R D Fd1an1~12d1!
X̄n

R1
2nG , n52, . . . ,N,

(4.7)

Xn5Yn50, n.N. (4.8)

The remaining two nonzero constantsX1 andY1 are determined
by the equations:

d1a11~12d1!
X1

R1
2 5S d21

a

RDY11v

d1X11~12d1!R1
2a15@~12d2!R1a#Y1R1R2v̄. (4.9)

The stress functionsf0 , f1 , andf2 are now determined from
~4.3!–~4.9! and again demonstrate the direct relationship betw
the stress field inside the inhomogeneity~characterized byf2! and
the prescribed remote loading of orderN21.

In particular, in the caseN51,

f285
s132 is23

m2

5Y1

5

~2d121!a11F ~12d1!
R2

R1
22d1Gv

~d11d221!
R2

R1
2 1d1d2S 12

R2

R1
2D 1a

R

R1
2 Fd1S 11

R1
2

R2D 21G
(4.10)
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en

which is the result first presented in Ru and Schiavone@1#, i.e.,
that the stress field inside a three-phase circular inhomogen
with homogeneously imperfect interface is uniform. Note th
~4.10! reduces tof28 obtained from~3.3! whend151.
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Radiation Loading of a Cylindrical
Source in a Fluid-Filled
Cylindrical Cavity Embedded
Within a Fluid-Saturated
Poroelastic Medium
Radiation loading on a vibrating structure is best described through its radiation imp
ance. In the present work the modal acoustic radiation impedance load on an infin
long cylindrical source harmonically excited in circumferentially periodic (axially ind
pendent) spatial pattern, while positioned concentrically within a fluid cylinder, whic
embedded in a fluid-saturated unbounded elastic porous medium, is computed. Thi
figuration, which is a realistic idealization of an acoustic logging tool suspended
fluid-filled borehole within a permeable surrounding formation (White, J. E., 1983,
derground Sound Application of Seismic Waves, Elsevier, Amsterdam, Fig. 5.29, p. 1
of practical importance with a multitude of possible applications in seismo-acoustics
noise control engineering. The formulation utilizes the Biot phenomenological mod
represent the behavior of the sound in the porous, fluid-saturated, macroscopically h
geneous and isotropic surrounding medium. Employing the appropriate wave-harm
field expansions and the pertinent boundary conditions for the given boundary con
ration, a closed-form solution in the form of an infinite series is developed and
resistive and reactive components of modal radiation impedances are determined.
merical example for a cylindrical surface excited in vibrational modes of various or
immersed in a water-filled cavity which is embedded within a water-saturated Ridge
sandstone environment, is presented and several limiting cases are examined. Eff
porosity, frame stiffness, source size, and the interface permeability condition o
impedance values are presented and discussed.@DOI: 10.1115/1.1488664#
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1 Introduction

There has been a progressing interest in acoustics of fl
saturated porous media due to its important applications in var
technical and engineering processes. In particular there is a
creasing demand in studying the propagation, attenuation, and
persion of elastic waves in granular media such as rock format
in petroleum reservoirs, ocean bed sedimentary layers, so
absorbing~impedance! ground, and in fibrous medium such a
biological tissues, polymer networks, and sound-absorbing m
rials. Gassmann@1# presented the first concise model for harmon
plane wave propagation in an infinite fluid-saturated porous so
His work is considered to be the first major breakthrough in p
dicting the elastic moduli of porous media at low frequenci
Gassmann’s treatment, however, disregarded the relative vis
fluid/elastic solid motion which is known to be the main cause
energy loss in the high-frequency regime. Approaching the pr
lem in a more unified manner, Biot@2–4# extended Gassman’
work and developed a straightforward and efficient two-ph
theory for wave propagation, addressing such issues as w
speed, attenuation, dispersion, and anisotropy. He formulated
appropriate constitutive equations and equations of motion in
roelastic media and predicted the existence of two types of d

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 12, 20
final revision, June 22, 2001. Associate Editor: D. A. Siginer. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departme
Mechanics and Environmental Engineering, University of California—Santa B
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication in the paper itself in the ASME JOURNAL OFAPPLIEDMECHANICS.
Copyright © 2Journal of Applied Mechanics
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tational ~compressional! waves along with one rotational~shear!
wave. Biot’s treatment agrees well with Gassmann’s results in
low-frequency range@5#.

For many years following the development of the Biot theory
dynamic poroelasticity the existence of the Biot slow compr
sional ~type II! wave remained the most controversial of its pr
dictions within the seismology and underwater acoustics com
nities. Recently the scientific groundwork for Biot’s model h
been more firmly established through several experimental val
tions of its most fundamental predictions, leading to a renew
interest in the subject. The first clear experimental observatio
the slow bulk waves was reported by Plona@6#. He detected Biot’s
slow wave under controlled experimental conditions in cons
dated porous media consisting of lightly fused glass beads~artifi-
cial rock! saturated with water. Subsequently Berryman@7# quan-
titatively analyzed and confirmed Plona’s observations a
concluded that Biot’s model provides the appropriate basic fra
work for analysis of general two-component effective-mediu
systems. Similarly, a rigorous microscale-based asymptotic an
sis by Burridge and Keller@8# has also confirmed the validity o
Biot’s equations under the proper set of assumptions. Further
perimental validations are accomplished by van der Grinten e
@9,10#, Rasolofosaon@11#, and Kelder and Smeulders@12,13#. Just
recently, Gurevich, Kelder, and Smeulders@14# performed accu-
rate dynamic numerical modeling and simulation of three succ
ful ultrasonic experiments, in which the type II wave was o
served, to gain insight into the problem and further substant
the validity of the Biot dynamic theory of poroelasticity.

When an interface separates a saturated porous medium fr
second medium, the question of the boundary conditions need
be examined. The interface conditions relate the field variables
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tial
both sides of a surface of discontinuity in the material proper
that are involved in the coefficients appearing in Biot’s equatio
The appropriate set of boundary conditions that are sufficien
produce a unique solution to Biot’s equations of motion when
interface separates two poroelastic media was originally der
by Deresiewicz and Skalak@15#. Many researchers have em
ployed these conditions to produce the solution to Biot’s equati
of motion for various scattering problems involving piecewise h
mogeneous porous materials such as layered poroelastic me
and porous media with inclusions. A proof of these conditions
the basis of Hamilton’s principle is given in the monograph
Bourbie et al.@16#.

While most research studies involve reflection and transmis
from a planar interface, comparatively little work has been do
on acoustic scattering or radiation from~bounded! convex-shaped
inclusions within a fluid-saturated porous medium. Applying
boundary layer approximation, Mei et al.@17# studied acoustic
scattering by a fluid-filled circular cavity within a fluid-infiltrate
poroelastic medium. Berryman@18# and Zimmerman@19# have
each employed a distinct analytical method to examine scatte
of plane compressional waves by a spherical inclusion in an
nite poroelastic medium. Zimmerman and Stern@20# developed
closed-form solutions to several basic problems of harmonic w
propagation in a poroelastic medium including radiation from
harmonically pulsating impermeable spherical inclusion, and s
tering of a plane compressional wave by a poroelastic sphe
inhomogeneity. Kargl and Lim@21# and Lim @22# formulated the
scattering problem using a transition matrix approach and
sented some numerical results for the case of scatter by a sph
poroelastic inclusion. Lim@23# developed a transition-matrix for
mulation of the field scattered by a bounded three-dimensio
object in a horizontally plane-stratified poroelastic environme
He numerically implemented his proposed exact solution for
aluminum sphere buried in an ocean sediment half-space an
sonified by an acoustic source in an overlying water half-spa
Gurevich et al.@24# developed a quantitative model for interactio
of an incident plane elastic compressional wave with a poroela
ellipsoidal inclusion embedded within a fluid-saturated poro
elastic medium employing the Born approximation. They obtain
relatively simple explicit analytical expressions for a number
common cases under the main assumption of low contrast o
clusion’s properties relative to the host medium. The trans
response of radially pressurized cylindrical cavity within an u
bounded fluid-saturated porous medium has been considere
Senjuntichai and Rajapakse@25#. Employing Biot’s equations of
poroelastodynamics, they obtained time-domain solutions for
dial displacements, stresses, pore pressure, and discharge by
inversion of Laplace domain solutions using an appropriate
merical scheme. Qi and Geers@26# presented the first formulation
of singly and doubly asymptotic approximations~DAAs! for a
poroelastic medium. They found good agreement of DAAs w
the exact solution by examining the surface response of a s
pressurized spherical shell and spherical cavity embedded i
infinite poroelastic medium. The more related problem of rad
tion loading on a spherical source freely suspended in a fluid-fi
spherical cavity embedded within a fluid-infiltrated elastic poro
medium has lately been tackled by Hasheminejad@27#.

Problems corresponding to sources immersed in fluid ne
permeable interface are of great practical importance with a m
titude of possible applications in technical fields, such as seis
prospecting, ocean acoustics, atmospheric acoustics, and
control engineering. In particular, theoretical and experimen
studies on the prediction of an acoustic field of a multipole sou
near a finite impedance surface are of fundamental interes
mentioned fields~@28–36#!. Representing an acoustic logging to
as a uniform circular cylinder of unlimited length suspended i
fluid-filled cylindrical cavity leads to an idealized model whic
may be looked as the starting point for a more realistic descrip
of the problem ~@5,37#!. Employing the above embodimen
676 Õ Vol. 69, SEPTEMBER 2002
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Poterasu@38# investigated dynamic coupling effects for a pulsa
ing source in a fluid-filled cavity embedded within an~ideal! elas-
tic infinite media by the boundary element method. In doing th
however, he made the unrealistic assumption for the surroun
formation to be nonpermeable. The principal objective of pres
paper is to employ Biot’s theory of wave propagation in flui
saturated poroelastic media to determine the radiation loading
a cylindrical source undergoing circumferentially periodic ha
monic vibrations in a fluid-filled cylindrical cavity embedde
within a poroelastic environment.

2 Governing Field Equations
Before proceeding to analyze the full problem, we shall fi

briefly review salient features of Biot’s dynamic theory of p
roelasticity. On a microscopic scale, sound propagation in por
materials is generally difficult to study due to the complicat
geometries of the frames. In the Biot model the medium is ta
to be a macroscopically homogeneous and isotropic tw
component solid/fluid system. It is therefore described in terms
averaged parameters. The averaging is performed on a ma
scopic scale, on volumes with dimensions sufficiently large for
average to be significant. Denoting the average macroscopic
placement of the solid frame and the saturating fluid on the
ementary macroscopic volume~EMV! by the vectorsu and U,
respectively, the macroscopic stress tensors i j and the mean pore
fluid pressurepp are given by~@16#!

s i j 5~l fe2bMj!d i j 12mei j
(1)

pp5M ~j2be!

where

l f5K f2
2

3
m

K f5
f0~1/Ks21/K f l !11/Ks21/Ko

f0 /Ko~1/Ks21/K f l !11/Ks~1/Ks21/Ko!

M51/~~b2f0!/Ks1f0 /K f l !

b512Ko /Ks (2)

ei j 5~ui , j1uj ,i !/2

j52¹•w52f0~«2e!

e5¹•u, «5¹•U

in which m is the shear modulus of the bare skeletal frame,f0 is
the pore volume fraction~porosity!, Ko is the bulk modulus of the
dry skeleton~i.e., for the ‘‘open’’ system,pp50!, Ks is the bulk
modulus of the material constituting the elastic matrix,K f l is the
bulk modulus of the saturating fluid,K f is the bulk modulus of the
‘‘closed’’ system, andw5f0(U2u) is the filtration displacemen
vector.

Following the standard methods of continuum mechanics
continua are described by sets of coupled balance equations
additional terms corresponding to the interaction between pha
Accordingly, the equations of motion~linear momentum balance!
governing the displacements of the solid matrix and intersti
liquid with dissipation taken into account are written as~@16#!

~l12m!¹¹•u1Q¹¹•U2m¹3¹3u5r11ü1r12Ü1b~ u̇2U̇!

(3)

Q¹¹•u1R¹¹•U5r12ü1r22Ü2b~ u̇2U̇!

where

l5l f1f0M ~f022b! r5~12f0!rs1f0r f l

Q5f0M ~b2f0! r115r1f0r f l~a22!
(4)

R5f0
2M r125f0r f l~12a!
Transactions of the ASME
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in which rs is the density of solid matrix material in a conso
dated nonporous state,r f l is the density of saturating fluid,r is the
total mass density of fluid-saturated material, and the effec
densitiesr11, r12, r22, which describe the combined effects
viscous and inertial drag, are frequency-independent param
relying on the geometry of the porous medium and the densit
the saturating fluid. The parametera, the tortuosity~structure fac-
tor! of the porous medium, was originally introduced into t
theory of acoustical materials by Zwikker and Kosten@39#. It is an
intrinsic geometrical property related to variations in pore sha
and orientations. The structure factor is equal to unity if the po
are straight and uniform and increases as the pores become ir
larly constricted and more tortuous~i.e., as they deviate more
from the direction of wave propagation!. The quantityb(v) is a
viscous coupling factor that accounts for the combined effect
macroscopic frictional dissipation due to finite fluid viscosity~vis-
cous drag forces! and the interaction between the fluid and so
movements~inertial forces!. A common functional form forb(v),
based on heuristic arguments, is given as~@40#!

b5
f0

2h

k
F~v! (5)

whereh is the saturating fluid viscosity, andk is the absolute (dc)
permeability of the porous medium. Here the quantityf0

2h/k cor-
responds to a frictional drag coefficient derived assuming P
seuille~laminar and incompressible! flow of a saturating fluid pas
the lattice walls at low frequencies. At higher frequencies
complexity of the pore geometry cannot properly be accounted
by the ‘‘static’’ permeability alone and the~dynamic! viscosity
correction factorF(v) is introduced to correct for deviations from
the Poiseuille flow~so that, naturally,F(0)51!. Biot @3# treated
the pore space as an ensemble of straight circular channels
studied viscous parallel fluid flow under an oscillatory press
gradient. He developed expressions forF(v) for cylindrical and
flat side pores in terms of fluid viscosity and pore diameter. The
after, many researchers have investigated the frequency de
dence of the Biot theory in terms of various fundamenta
equivalent parameters~e.g., permeability, tortuosity, and viscou
characteristic length!. In 1987, Johnson et al.@41# considered a
network of straight channels with randomly distributed radii a
introduced a very simple and fairly accurate alternative mo
~JKD model! for description of dynamic permeability at arbitrar
frequencies based on energy flux consideration on the micros
Johnson’s et al. description differed slightly from Biot’s mod
but showed the same general behavior in the low and the h
frequency limits. In the present work we shall adopt the JK
description of dynamic permeability effects. According to Johns
et al. @41#, the simplest possible model forF(v) is ~please see
their Eq.~3.3!!

F~v!5H 12 j
4a2k2r f lv

hL2f0
2 J 1/2

(6)

whereL'A8ak/f0, the viscous characteristic length, is a we
defined parameter relevant to a wide range of transport prope
It depends exclusively on frame geometry and intrinsically
scribes the dimensions of dynamically interconnected po
~@40#!.

The Helmholtz decomposition theorem allows us to resolve
displacement fields as the superposition of longitudinal and tra
verse vector components

u5¹f1¹3c
(7)

U5¹x1¹3Q.
Journal of Applied Mechanics
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Substituting the above resolutions into Biots’ field equations
motion ~3!, we obtain two sets of coupled equations~hereafter we
shall assume harmonic time variations withe2 j vt dependence
suppressed for simplicity!:

Fl12m Q

Q R
G F¹2f

¹2x G5Fr11v
22 j vb r12v

21 j vb

r12v
21 j vb r22v

22 j vb
G Ffx G (8)

Fm 0

0 0G F¹2c
0 G5Fr11v

22 j vb r12v
21 j vb

r12v
21 j vb r22v

22 j vb
G F c

Q G . (9)

Using standard methods of wave analysis, the above syst
may be manipulated to yield the Helmholtz equations~@16#!:

¹2f f ,s1kf ,s
2 f f ,s50

(10)
¹2c1kt

2c50

wherekf , ks , andkt which designate the complex wave numbe
of the fast compressional, slow compressional, and the ela
shear waves, respectively, are given as

kf ,s
2 5

B7AB224AC

2A
kt

25
C

m~r22v
21 j vb!

(11)

where

A5~l12m!R2Q2

B5v2@r11R1r22~l12m!22r12Q#1 j vb~l12m12Q1R!
(12)

C5v2@v2~r11r222r12
2 !1 j vrb#.

Employing Eqs.~8! through~11!, with some manipulations, the
scalar potentialsf, x, Q, andc may be expressed as

f5f f1fs

x5m ff f1msfs (13)

Q5a0c

where

m f ,s5
v2~r11R2r12Q!2kf ,s

2 @~l12m!R2Q2#1 j vb~Q1R!

v2~r22Q2r12R!1 j vb~Q1R!
(14)

a052
v2r122 j vb

v2r221 j vb
.

The fluid contained in the cylindrical cavity is assumed to
inviscid and ideally compressible that cannot support sh
stresses making the state of stress in the fluid purely hydrost
Consequently the field equations may be expressed in terms o
velocity potential of the cavity fluid as~@42#!

ṡ5¹w

p52 r̄ẇ (15)

¹2w1k2w50

wherek(5v/c) is the wave number for the dilatational wave,r̄ is
the density,ṡ is the velocity vector, andp is the acoustic pressur
in the inviscid fluid.

3 Field Expansions and Boundary Conditions
The geometry and the coordinate system used are depicte

Fig. 1, which is a close reproduction of Fig. 5.29 in Ref.@5#. The
dynamics of the problem may be expressed in terms of appro
ate scalar potentials. The compressional waves that are trapp
the inviscid fluid layer inside the cylindrical cavity may be e
pressed as
SEPTEMBER 2002, Vol. 69 Õ 677
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`

@DnJn~kr !1EnHn~kr !#cosnu (16)

whereJn are cylindrical Bessel functions, andHn are the cylin-
drical Hankel functions~@43#!, Dn andEn are unknown scattering
coefficients. Similarly, the transmitted~outgoing! fast dilatational
wave, slow dilatational wave, and the shear wave in the poroe
tic medium exterior to the cavity are, respectively, represented

f f5(
n50

`

AnHn~kfr !cosnu

fs5(
n50

`

BnHn~ksr !cosnu (17)

c5(
n50

`

nCnHn~ktr !sinnu.

Now considering the basic field equations in cylindrical co
dinates, assuming no axial dependence, the solid and liquid
placements in ther and u-directions in terms of displacemen
potentials in the poroelastic media are~@42#!

Fig. 1 Problem geometry
678 Õ Vol. 69, SEPTEMBER 2002
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Expressions for the frame and liquid dilatations can be mani
lated to yield

e5¹•u5¹2f5¹2f f1¹2fs52kf
2f f2ks

2fs (19)
e5¹•U5¹2x5m f¹

2f f1ms¹
2fs52m fkf

2f f2msks
2fs

where

¹25
1

r

]

]r S r
]

]r D1
1

r 2

]2

]u2 . (20)

Utilizing Eqs. ~1!, ~13!, ~18!, and~19!, pore fluid pressure, radia
and tangential stress components are expressed as

s rr 5afkf
2f f1asks

2fs12m~]ur /]r ! (21)

pp5Mbfkf
2f f1Mbsks

2fs (22)

s ru5
m

r S ]ur

]u
1r

]uu

]r
2uuD (23)

where

af ,s52l f1f0bM ~12m f ,s! (24)
bf ,s5b1f0~m f ,s21!.

The unknown scattering coefficientsAn throughEn in Eqs.~16!
and ~17! must be determined by the application of suitable int
face conditions. The only boundary condition at the cylindric
surface~i.e., at r 5a1! is the continuity of normal velocity, thus
the first of Eqs.~15! leads to

]w

]r G
r 5a1

5v5(
n50

`

vn cosnu (25)

where vn represents the modal radial velocity amplitude of t
cylindrical surface.

Microscopically, the boundary conditions at a poroelastic int
face are very complicated. This is true particularly at the interfa
between two poroelastic media of distinct pore size. The situa
can be simplified by averaging in a volume sense as discusse
Deresiewicz and Skalak@15#. The appropriate boundary cond
tions that have to be satisfied at the cavity wall~i.e., atr 5a2! to
yield a unique solution for the proposed problem are~@16#!:

1. compatibility of normal stress in poroelastic media with t
acoustic pressure in the cavity fluid

s rr 52p (26a)

2. vanishing of tangential stress

s ru50 (26b)

3. continuity of normal component of the filtration velocity

ẇr5f0~U̇r2u̇r !5 ṡr2u̇r (26c)

4. consistency of the pressure drop and the normal compo
of filtration velocity ~i.e., satisfaction of Darcy’s law which
governs the fluid flow across the interface!

ẇr52ks~p2pp! (26d)

where the parameterks characterizes the permeability of the in
terface, i.e., it describes the quality of interconnection betw
two media. For an open interface, we expect zero pressure
(p5pp) and hence we letks5`. To characterize a sealed inte
face~i.e., for ẇ50! we takeks50. Obviously, acoustic propertie
involving the interface is expected to be highly sensitive to
Transactions of the ASME
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state of the surface condition. For clarity, in the present article
do not consider the possibility of a partially sealed bound
condition.

Now the unknown scattering coefficients shall be determin
by imposing the stated boundary conditions. Employing exp
sions~16! and ~17! in the field Eqs.~18! through~24!, and sub-
stituting obtained results into the boundary conditions~25! and
~26!, we obtain

kJn8~ka1!Dn1kHn8~ka1!En5vn (27)

$kf
2@afHn~kfa2!12mHn9~kfa2!#%An1$ks

2@asHn~ksa2!

12mHn9~ksa2!#%Bn1H 2mn2

a2
FktHn8~kta2!2

1

a2
Hn~kta2!G J

3Cn1$ j vr̄Jn9~ka2!%Dn1$ j vr̄Hn~ka2!%En50 (28)

H 2m

a2
F 1

a2
Hn~kfa2!2kfHn8~kfa2!G J An1H 2m

a2
F 1

a2
Hn~ksa2!

2ksHn8~ksa2!G J Bn1
m

a2
2 $~2n2!Hn~kta2!1a2ktHn8~kta2!

2a2
2kt

2Hn9~kta2!%Cn50 (29)

$ j vkfHn8~kfa2!@f0~12m f !21#%An

1$ j vksHn8~ksa2!@f0~12ms!21#%Bn

1H n2

a2
j vHn~kta2!@f0~12a0!21#J Cn

1$2kJn8~ka2!%Dn1$2kHn8~ka2!%En50 (30)

$ j vf0kfHn8~kfa2!@12m f #2ksMbfkf
2Hn~kfa2!%An

1$ j vf0ksHn8~ksa2!@12ms#2ksMbsks
2Hn~ksa2!%Bn

1H n2

a2
j vf0Hn~kta2!@12a0#J Cn1$ j vr̄ksJn~ka2!%Dn

1$ j vr̄ksHn~ka2!%En50 (31)

wheren50,1,2, . . . , except for Eq.~29! wheren51,2, . . . .
The fluctuating acoustic pressure on the surface of a vibra

structure constitutes its radiation loading. The radiation loading
a cylindrical surface excited in vibrational modes of various or
~i.e., monopole, dipole, quadrupole, and multipole-like radiato!
is best described through its acoustic radiation impedance. F
unique review on the subject one should consider Ref.@44#. At
this point we may favorably express the system of Eqs.~27!
through~31! in matrix form as

u05R0c0 , un5Rncn n>1 (32)

where

c05@A0 ,B0 ,D0 ,E0#T cn5@An ,Bn ,Cn ,Dn ,En#T

(33)
u05@v0,0,0,0#T un5@vn,0,0,0,0#T.

Fluid pressure on the vibrating cylindrical surface is determin
from the second of Eqs.~15! and Eq.~16! as

pn~r 5a1!5$ j vr̄Jn~ka1!%Dn1$ j vr̄Hn~ka1!%En (34)

which can also readily be put in matrix form as

p05S0c0 , pn5Sncn n>1. (35)

Using Eqs.~32! and ~35!, modal pressure may be stated as

p05Z0u0 , pn5Znun n>1 (36)

where

Z05S0R0
21, Zn5SnRn

21 n>1. (37)
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Finally, noting the structure of the vectorsu0 andun , we iden-
tify the acoustic impedance for modal vibrations of the cylindric
surface inside the cavity,zn , as the first element of the ‘‘Z’’ ~im-
pedance! matrix ~@45#!. Moreover, modal acoustic impedance c
be expressed in terms of its resistive and reactive compon
as ~@44#!

zn~v!5 r̄crn~v!2 ivr̄a1mn~v!. (38)

4 Numerical Results
In order to illustrate the nature and general behavior of

solution, we consider a numerical example in this section. R
izing the large number of parameters involved here, no attemp
made to exhaustively evaluate the effect of varying each of th
The intent of the collection of data presented here is merely
illustrate the kinds of results to be expected from some repre
tative and physically realistic choices of values for these para
eters. From these data some trends are noted and general co
sions made about the relative importance of certain paramete

Accurate computation of cylindrical Bessel functions of com
plex argument is a challenging task. To achieve this, FORTR
subroutines CBESH and CBESJ were first employed~@46#!. The
precision of calculated values were checked aga
MATLAB ~5.3! specialized math functions ‘‘besselh’’ an
‘‘besselj,’’ and also the printed tabulations in the handbook
Abramowitz and Stegun@43#. Performing computations over
wide range of~complex! arguments and~integer! orders on a Pen-
tium personal computer, it was concluded that MATLAB resu
are more dependable especially for large arguments and high
ders. Subsequently, a MATLAB code for computingZ5SR21

was constructed to calculate modal acoustic impedance value
functions of nondimensional frequencyka15va1 /c. Accurate
computations for derivatives of cylindrical Bessel functions
complex argument were accomplished by utilizing Eq.~9.1.27! in
Ref. @43#.

Noting the crowd of parameters that enter into the final expr
sions and keeping in view the availability of numerical data,
shall confine our attention to a particular model. Johnson e
@47,48# reported the first instance in which all the input para
eters necessary for a complete description of acoustic mat
properties within the context of Biot theory have been measu
independently over the entire frequency spectrum. The input
rameter values for water-saturated Ridgefield sandstone, w
are used in the calculations, are compiled in Table 1.

Figures 2 and 3 each displays the inertial and the resistive c
ponents of the modal acoustic impedance, for a radii ratio
a2 /a1520 cm/10 cm, and 200 cm/100 cm, respectively, w
open interface condition~i.e., ks5`! and basic material proper
ties as given in Table 1. Here we note the high-frequency osc
tions of modal impedance curves, which is due to boundary in
ference and rebeveration effects, as it is discussed in detai
Hasheminejad and Geers@49#. To assess the effects of interfac
condition, porosity, and frame stiffness on modal impedance

Table 1 Input parameter values used in Biot’s model

Parameter Water-Saturated Sandstone

f0 0.37
a 1.58
k ~cm2! 27.731028

rs (g/cm3) 2.48
Ks (dyn/cm2) 4.9931011

Ko (dyn/cm2) 5.2431010

m ~dyn/cm2! 3.2631010

r f l (g/cm3) 1.00
K f l (dyn/cm2) 2.2531010

h ~g/cm•sec! 0.01
L ~cm! 19.431024
SEPTEMBER 2002, Vol. 69 Õ 679
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sults, several computer program runs were made using var
source and cavity sizes. It was concluded that the most
nounced overall effects occur for a radii ratio near unity~i.e.,
small gap size!. Figures 4 to 6 display such effects for the selec
radii ratio of a2 /a1512.cm/10 cm.

In regard to the borehole condition, obviously the creation o
borehole may drastically change the properties of the surroun
medium in the vicinity of the well-hole wall. As most of th
acoustic experimental techniques are highly sensitive to the
meability of the interface, it seems logical to investigate the eff

Fig. 2 Modal acoustic impedance curves „a2 Õa1
Ä20 cm Õ10 cm, ksÄ`…

Fig. 3 Modal acoustic impedance curves „a2 Õa1
Ä200 cm Õ100 cm, ksÄ`…
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of an interface condition on radiation loading of the cylindric
source. This effect may be studied through the parameter 0<ks
,`, which, as explained before, characterizes the permeabilit
the interface. For simplicity we have only considered two limitin
cases ofks5` ~fully open interface! and ks50 ~completely
sealed interface!. The relevant results are compared in Figs. 4~a!
and 4~b!. As expected, the modal impedance values increase a
quality of interconnection weakens. Note the extremely high
actance value obtained for then50 ~‘‘breathing’’! mode in the
sealed interface case. In this instance, fluid exchange through

Fig. 4 „a… Effect of interface condition on modal acoustic re-
actance values „a2 Õa1Ä12 cm Õ10 cm …; „b… effect of interface
condition on modal acoustic resistance values „a2 Õa1
Ä12 cm Õ10 cm …
Transactions of the ASME
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interface is impossible so we expect the Biot dissipation mec
nism to become negligible as in the case of wave propagatio
an infinite elastic medium.

The influence of porosity on modal impedance curves is sho
in Figs. 5~a! and 5~b!. For the reason of clarity only two porosit
values are examined, namelyf050.27 andf050.47. The related
tortuosity and L values are obtained by scaling the expe
mental values given in Table 1 according to the followi
approximations:

Fig. 5 „a… Influence of porosity on modal acoustic reactance
values „a2 Õa1Ä12 cm Õ10 cm, ksÄ`…; „b… influence of porosity
on modal acoustic resistance values „a2 Õa1Ä12 cm Õ10 cm,
ksÄ`…
Journal of Applied Mechanics
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a'1/Af0 ~Berryman @50# !
(39)

L'A8ak/f0 ~Allard @40# !.

Table 2 displays the input parameter values fora, andL which
are utilized in numerical computations. The main outcome is
increase in impedance values as the porosity~tortuosity! decreases
~increases!. This result is readily conceivable, since as the poros
decreases~tortuosity increases! we anticipate higher force oppos
ing modal vibrations of the cylindrical surface inside the cavit

Fig. 6 „a… Effect of frame stiffness on modal acoustic reac-
tance values „a2 Õa1Ä12 cm Õ10 cm, ksÄ`…; „b… effect of frame
stiffness on modal acoustic resistance values „a2 Õa1
Ä12 cm Õ10 cm, ksÄ`…
SEPTEMBER 2002, Vol. 69 Õ 681
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Figures 6~a! and 6~b! analyze the effect of frame stiffness b
considering twoKo /Ks ratios, namelyKo /Ks>0 and Ko /Ks
50.9. IncreasingKo /Ks at constant porosity corresponds to t
existence of increasingly finer pore channels. Here as the fr
stiffens, the opposing acoustic force grows which is the precis
expected outcome as displayed in the figures. Finally, to check
overall validity of our work we consider the ‘‘all-fluid’’ surround
ing medium case~@16#!, i.e., we make the computations forf0
5a51, and K05m5h>0 as shown in Fig. 7. Evidently, ou
results reduce to those for modal vibrations of a cylindrical s
face in an ideal infinite acoustic fluid~e.g., Fig. 21.4, p. 437, Ref
@51#!. This simply implies that when there is no impedance m
match at the interface, we get no wave reflections~interference!
from the borehole boundary.

Clearly the overall displayed trends are somewhat anticipa
The most surprising observation is the general low-frequency
havior of n50 ~breathing mode! modal acoustic resistanc
curves. Inasmuch as acoustic resistance is directly proportion
the radiated power, the notable low-frequencyr 0(v) values sim-
ply imply that the pulsating cylindrical source~i.e., the expander
type acoustic device! is expected to be an efficient sound projec
even in the low-frequency range for the studied configuration

5 Conclusions
Modal acoustic impedance curves have been generated

cylindrical radiator in a fluid-filled cylindrical cavity embedde
within a fluid-infiltrated unbounded poroelastic medium. The

Fig. 7 Modal impedance curves for the ‘‘all-fluid’’ medium ap-
proximation „a2 Õa1Ä12 cm Õ10 cm, ksÄ`, f0ÄaÄ1, K 0ÄmÄh
Ä0…

Table 2 Estimated values for tortousity, characteristic viscous
length, and frequency. „Note: values listed in the first row are
experimental, taken from Table 1. …

f0 a L vc

0.37 1.58 19.431024 8.363103

0.27 1.85 24.731024 5.183103

0.47 1.40 16.231024 12.023103
682 Õ Vol. 69, SEPTEMBER 2002
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curves are the product of an exact treatment of the fluid/struc
interaction that involves utilizing Biot’s dynamic model and th
appropriate boundary conditions of poroelasticity. The numer
results reveal the important effects of the interface condition,
rosity ~tortuosity!, and frame stiffness on the computed mod
acoustic impedance values. They also show that for the gi
arrangement the pulsating~expander-type! cylindrical source is
expected to be an efficient sound projector even at the l
frequency limit. The presented formulation can lead to a be
understanding of dynamic response of downhole sources~acoustic
logging tools! which are commonly applied in seismic prospec
ing. Moreover, the proposed model is equally applicable in no
control engineering situations in which the surrounding medi
consists of rigid~elastic! frame porous materials. Therefore it
hoped that this work may initiate further studies, both theoreti
and observational, in the acoustics of fluid-saturated por
media.
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Buckling of Laminated Composite
Rectangular Plates Under
Transient Thermal Loading
This paper deals with the nonlinear dynamic buckling of laminated composite rectan
plates subjected to uniform time-dependent in-plane temperature-induced loading
dynamic post-buckling deflection response is obtained and dynamic critical tempera
are estimated. The nonlinear governing equations of motion are solved analytically u
fast Chebyshev series technique. The numerical results for CCCC, CCCS, CCSS,
CSSS and SSSS boundary conditions are presented.@DOI: 10.1115/1.1485755#
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1 Introduction
The structural elements of certain advanced engineering s

tures are subjected to a periodic, intense thermal input, wh
generates a high level of structural vibrations and instabi
Large stresses due to dynamic instability lead to structural fail
Thermal buckling problems of laminated composite structu
have been the interest of the researchers for the last several y
A majority of the published literature is concerned with tim
independent temperature fields and application of numerical
proaches. The dynamic instability behavior of composite la
nates subjected to harmonically varying uniform mechanical e
loading has been investigated by several researchers~Bert and
Birman @1#, Moorthy and Reddy@2# Ganapathi et al.@3#, and Liao
and Cheng@4#! and still has an interest. A review of the literatu
reveals that the nonlinear transient response and post-bucklin
laminated composite plates under transient thermal loading h
received little attention.

Nonlinear random response of antisymmetric angle-ply la
nated composite rectangular plates subjected to thermal
acoustic loads was investigated by Locke@5#. He used a single-
mode Galerkin approach in conjunction with the method
equivalent linearization. Abbas et al.@6# carried out nonlinear flut-
ter analysis of an orthotropic composite panel under aerodyna
heating. They estimated the nonlinear dynamic deflection for
ferent aerodynamic pressures and obtained the Poincare sec
Lee and Lee@7# studied the vibration behavior of thermally pos
buckled anisotropic plates, using the finite element method. T
model was based on the first-order shear deformation theory
von Karman strain displacement relations. They investigated
effects of fiber orientation angle and aspect ratio on the p
buckling and vibration behaviors for a simply supported lamina
plate subjected to steady-state in-plane uniform temperature fi
The geometrically nonlinear supersonic flutter characteristics
laminated composite thin plate structures subjected to ther
loads were investigated by Liaw@8#, using a 48-degree-of
freedom rectangular laminated thin finite element. The influe
of the amplitude of vibration on the dynamic stability regions
composite laminates exposed to temperature field was carried
by Ganapathy and Touratier@9# using the finite element method
They evaluated the instability boundaries from the nonlinear g
erning equations using a direct iteration technique. Tylikowa

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februa
1, 2001; final revision, November 15, 2001. Associate Editor: R. C. Benson. Dis
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Department of Mechanical and Environmental Engineering University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
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and Hetnarski@10# presented an investigation of dynamic stabili
for linear elastic structures due to nonuniform time and spa
dependent stochastic temperature field. They used the Liapu
method for solving the stability problems of laminated plates.
brescu and Souza@11# investigated the effects of nonlinearities o
the dynamics of orthogonal stiffened simply supported flat pan
having initial geometric imperfections and subjected to late
pressure and uniform temperature field through thickness.

In the present study, the nonlinear dynamic analysis of la
nated composite plates subjected to uniform in-plane tempera
is carried out using Chebyshev series~Fox and Parker@12#! and
the Houbolt time marching technique~Houbolt @13#!. An iterative
incremental approach~Shukla and Nath@14#! is used for the so-
lution. The dynamic post-buckling temperature-deflection
sponse is obtained and the dynamic critical temperatures are
mated. Discontinuous jump in the characteristics param
~central deflection! or the point of inflexion of the maximum dis
placement response or convergence failure in 300 iterations du
a small increment in the marching variable~load! is adopted as a
criteria for the estimation of buckling load~Budiansky and Roth
@15#, Stephens and Fulton@16#, and Jain and Nath@17#!.

2 Formulation
Perfect bonding between the orthotropic layers a

temperature-independent mechanical and thermal properties
assumed. The displacement field at a point in the laminate sh
in Fig. 1 is expressed as

U~X,Y,Z,t !5u0~X,Y,t !1zcx~X,Y,t !

V~X,Y,Z,t !5v0~X,Y,t !1zcy~X,Y,t ! (1)

W~X,Y,Z,t !5w0~X,Y,t !

whereu0 , v0 , andw0 are displacements at a point on the mi
plane of the plate.cx , cy are rotations ofxzandyz-plane, respec-
tively.

The strain-displacement relations due to von karman-type n
linearity become

5
«X

«Y

gXY

gXZ

gYZ

6 55
u0,X1

1

2
~w0,X!2

v0,Y1
1

2
~w0,Y!2

u0,Y1v0,X1w0,Xw0,Y

w0,X1cX

w0,Y1cY

6 1z5
cX,X

cY,Y

cX,Y1cY,X

0
0

6 . (2)ry
us-
ing,
a–
four
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The stress and moment resultants of laminated composite
angular plates havingn layers of orthotropic lamina, subjected t
thermal loading due to uniform in-plane temperature can be
pressed as

5
NX

NY

NXY

MX

MY

MXY

6 53
A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

4
3

¦

u0,X1
1

2
~w0,X!2

v0,Y1
1

2
~w0,Y!2

u0,Y1v0,x1w0,Xw0,Y

cX,X

cY,Y

cX,Y1cY,X

§
25

NX
T

NY
T

NXY
T

MX
T

MY
T

MXY
T

6 (3)

H QY

QX
J 5FA44 A45

A45 A55
G H gYZ

gXZ
J . (4)

Fig. 1 Geometry of laminated plate
Journal of Applied Mechanics
ect-
o
ex-

Thermal force and moment resultants are

H Nx
T ,Mx

T

Ny
T ,M y

T

Nxy
T ,Mxy

T
J 5(

k51

n E
zk21

zk F Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

G
k

H ax

ay

axy

J
k

3DT~ t !~1,z!dz (5)

whereDT5applied temperature2reference temperature.
The laminate stiffness coefficients (Ai j ,Bi j ,Di j ) defined in

terms of the reduced stiffness coefficients (Q̄i j )k for the layersk
51,2,—n ~Jones@18#! are

~Ai j , Bi j , Di j !5(
k51

n E
zk21

zk

~1,z,z2!~Q̄i j !k dz ~ i , j 51,2,6!

(6)

Ai j 5(
k51

n

kikjE
zk21

zk

~Q̄i j !k dz ~ i , j 54,5! (7)

where k4
255/6, k5

255/6 are shear correction factors~Whitney
@19#!.

Neglecting the body forces and surface shearing forces,
equations of motion along with the admissible domain conditio
can be derived using Hamilton’s principle.

The equations of motion~Yang, Norris, and Stavsky@20#! are

NX,X1NXY,Y5Ru0,u1ScX,u (8)

NXY,X1NY,Y5Rv0,tt1ScY,tt (9)

QX,X1QY,Y1R~Ni ,w!1q5Rw0,tt (10)

MX,X1MXY,Y2QX5Su0,tt1IcX,tt (11)

MXY,X1MY,Y2QY5Sv0,tt1IcY,tt (12)

where in-plane (R), coupled normal-rotary (S), and rotary~I!
inertia are

~R,S,I !5E
2h/2

h/2

r~1,z,z2!dz5(
k51

n E
zk21

zk

r~k!~1,z,z2!dz. (13)

The nonlinear operator in Eq.~10! is

R5
]

]x S NX

]w

]X D1
]

]Y S NXY

]w

]X D1
]

]X S NXY

]w

]Y D
1

]

]Y S NY

]w

]Y D . (14)

Substituting Eqs.~2!–~7! in the equations of motion~8!–~12!,
the governing differential equations are transformed in terms
the displacement components and are expressed in nondi
sional form as
L1u,xx1L2u,yy1L3u,xy1L4v ,xx1L5v ,yy1L6v ,xy1L7cx,xx1L8cx,yy1L9cx,xy1L10cy,xx1L11cy,yy1L12cy,xy

1~L13w,xx1L14w,yy1L15w,xy!w,x1~L16w,xx1L17w,yy1L18w,xy!w,y2L19N̄x,x
T 2L20N̄xy,y

T 5R1u,tt1R2cx,tt (15)

L21u,xx1L22u,yy1L23u,xy1L24v ,xx1L25v ,yy1L26v ,xy1L27cx,xx1L28cx,yy1L29cx,xy1L30cy,xx1L31cy,yy1L32cy,xy

1~L33w,xx1L34w,yy1L35w,xy!w,x1~L36w,xx1L37w,yy1L38w,xy!w,y2L39N̄xy,x
T 2L40N̄y,y

T 5R3v,tt1R4cy,tt (16)
SEPTEMBER 2002, Vol. 69 Õ 685



L41w,xx1L42w,yy1L43w,xy1L44cx,x1L45cx,y1L46cy,x1L47cy,y1~L48u,x1L49u,y1L50v,x1L51v,y1L52cx,x1L53cx,y

1L54cy,x1L55cy,y!w,xx1~L56u,x1L57u,y1L58v,x1L59v,y1L60cx,x1L61cx,y1L62cy,x1L63cy,y!w,yy

1~L64u,x1L65u,y1L66v,x1L67v,y1L68cx,x1L69cx,y1L70cy,x1L71cy,y!w,xy1~L72w,xx1L73w,yy1L74w,xy!~w,x!
2

1~L75w,xx1L76w,yy1L77w,xy!~w,y!21~L78w,xx1L79w,yy1L80w,xy!w,xw,y1~L81u,tt1L82cx,tt!w,x

1~L83v,tt1L84cy,tt!w,y2L85N̄x
Tw,xx2L86N̄y

Tw,yy2L87N̄xy
T w,xy1q* 5R5w,tt (17)

L88u,xx1L89u,yy1L90u,xy1L91v ,xx1L92v ,yy1L93v ,xy1L94cx,xx1L95cx,yy1L96cx,xy1L97cy,xx1L98cy,yy1L99cy,xy

1L100w,x1L101w,y1L102cx1L103cy1~L104w,xx1L105w,yy1L106w,xy!w,x1~L107w,xx1L108w,yy1L109w,xy!w,y

2L110M̄ x,x
T 2L111M̄ xy,y

T 5R6u,tt1R7cx,tt (18)

L112u,xx1L113u,yy1L114u,xy1L115v ,xx1L116v ,yy1L117v ,xy1L118cx,xx1L119cx,yy1L120cx,xy1L121cy,xx1L122cy,yy

1L123cy,xy1L124w,x1L125c,y1L126cx1L127cy1~L128w,xx1L129w,yy1L130w,xy!w,x

1~L131w,xx1L132w,yy1L133w,xy!w,y2L134M̄ xy,x
T 2L135M̄ y,y

T 5R8v,tt1R9cy,tt . (19)

The nondimensional parameters,L1 , L2 , . . . andR1 , R2 . . . and nondimensional timet are given in the Appendix.
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Boundary Conditions.
~a! simple supported (S):

u,Nxy ,w,Mx ,cy50 at x521 and 1

Nxy ,v,w,cx ,M y50 at y521 and 1

~b! clamped (C):

u,Nxy ,w,cx ,cy50 at x521 and 1

Nxy ,v,w,cx ,cy50 and y521 and 1

3 Method of Solution
A general functionf(x,y) can be approximated in the spac

domain by the finite degree double Chebyshev polynomial~Fox
and Parker@12#! as

f~x,y!5d(
i 50

M

(
j 50

N

f i j Ti~x!Tj~y! (20)

where

d5
1

4
if i 50 and j 50

d5
1

2
if i 50 and j Þ0 or iÞ0 and j 50

d51 otherwise.

The spatial derivative of a general functionf(x,y) can be ex-
pressed as

f ,xy
rs 5d (

i 50

M2r

(
j 50

N2s

f i j
rsTi~x!Tj~y! (21)

Here,r ands are the order of derivatives with respect tox andy,
respectively.

The derivative functionf i j
rs is evaluated, using the recurrenc

relations given by Fox and Parker@12#

f~ i 21! j
rs 5f~ i 11! j

rs 12if i j
~r 21!s

(22)
f i ~ j 21!

rs 5f i ~ j 11!
rs 12 j f i j

r ~s21! .

The nonlinear terms are linearized at any step-marching v
able using the quadratic extrapolation technique. A typical non
ear functionG at stepJ is expressed as
686 Õ Vol. 69, SEPTEMBER 2002
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Gj5Fd (
i 50

M2r

(
j 50

N

f i j
r Ti~x!Tj~y!G

j
* Fd(

i 50

M

(
j 50

N2s

f i j
s Ti~x!Tj~y!G

J
(23)

where

~f i j !J5A~f i j !J211B~f i j !J221C~f i j !J23 . (24)

During initial steps-marching variables, the coefficientsA, B, C
of the quadratic extrapolation scheme of linearization~Nath and
Sandeep@21#! take the following values:

1,0,0 ~J51!; 2,21,0 ~J52!; 3,23,1 ~J>3!.

The product of two Chebyshev polynomials is expressed a

Ti~x!Tj~y!Tk~x!Tl~y!5@Ti 1k~x!Tj 11~y!1Ti 1k~x!Tj 21~y!

1Ti 2k~x!Tj 11~y!1Ti 2k~x!Tj 21~y!#/4.

(25)

The displacement functions and loading are approximated by
nite degree Chebyshev polynomials as

~u,v,w,cx ,cy ,Q!

5d(
i 50

M

(
j 50

N

~ui j ,v i j ,wi j ,cxi j ,cyi j ,Qi j !Ti~x!Tj~y!;

21<x<1
21<y<1. (26)

The implicit Houbolt time-marching scheme~Houbolt @13#! is
used to evaluate the acceleration terms (u,tt)J , (v ,tt)J , (w,tt)J ,
(cx,tt)J , and (cy,tt)J in the governing equations of motion. Th
expression for general acceleration (f ,tt)J is evaluated as

~f ,tt!J5~b1fJ1b2fJ211b3fJ221b4fJ231b5!/~Dt2!
(27)

where t is nondimensional time andb i are coefficients of the
time-marching scheme.

Making use of the above procedure of spatial and tempo
discretizations and linearization, the nonlinear differential E
~15!–~19! are discretized in space and time domains, respectiv
A set of generating linear algebraic equation can be expresse
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(
i 50

M22

(
j 50

N22

Fk~ui j ,v i j ,wi j ,cxi j ,cyi j ,Qi j !Ti~x!Tj~y!50.

(28)

Similarly the appropriate sets of boundary conditions are also
cretized.

The total number of unknown coefficients are 5(M11)(N
11). Collocating the zeroes of Chebyshev polynomia
5~M–1!~N–1! algebraic equations are generated from the gove
ing differential equations. Similarly the CCCC~all edges
clamped!, CCCS~three edges clamped and one simply supporte!,
CCSS~two opposite edges clamped and two simply supporte!,
CSCS~two adjacent edges clamped and two simply supporte!,
CSSS~one edge clamped and three simply supported!, and SSSS
~all edges simply supported! boundary conditions generate (10M
110N116), (10M110N115), (10M110N114), (10M110N
114), (10M110N113), and (10M110N112) algebraic equa-
tions, respectively. It is clear that the total number of equation
more than the unknown coefficients. In order to have a compat

Table 1 Convergence study for four layers antisymmetric
cross-ply †0Õ90Õ0Õ90‡ square CSCS plate „aÕhÄ10, qa 4ÕE2h 4

Ä50, Material A …

M,N

Center (Dt50.1)

wc ~max.! t M̄ x ~max! t

5 0.516899 12.6 2.46606 9.6
6 0.498366 11.2 2.52769 9.7
7 0.493602 11.2 2.39125 9.8
8 0.499053 11.4 2.29421 10.4
9 0.497812 11.4 2.28463 10.3
10 0.492611 11.1 2.36994 9.9
11 0.492311 11.1 2.35379 9.9
12 0.493070 11.1 2.32018 9.9

Dt

Center (M5N59)

wc ~max.! t M̄ x ~max! t

0.2 0.474231 11.6 2.28616 10.4
0.1 0.497812 11.4 2.28463 10.3
0.05 0.497660 11.3 2.27933 10.6
Journal of Applied Mechanics
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solution, the multiple regression analysis~Nath and Sandeep@21#!
based on the least-square error norms is used. The nonlinear t
are transferred to the right side and computed at each step o
marching variable. The left side matrix consists of linear ter
and hence remains invariant with respect to the marching varia
The set of linear equations are expressed in matrix form as

@A#$a%5$Q% (29)

where@A# is the (m* n) coefficient matrix,$a% is the (n* 1) dis-
placement vector, and$Q% is the (m* 1) load vector. Multiple re-
gression analysis gives

$a%5~@A#T@A# !21@A#T$Q%

or

$a%5@B#$Q%. (30)

The matrix @B# is evaluated once and retained for subsequ
usage.

Table 2 Comparison of uniaxial nondimensional static critical
loads lcr „ÄNxb 2ÕE2h 3

… for symmetrically laminated cross-ply
simply supported square plate „aÕhÄ10, Material A …

Number of Layers E1 /E2

lcr

Present Noor@22# Owen and Li@23#

3 40 22.7273 22.8807 23.3330
30 19.2300 19.3040 19.6872
20 15.1563 15.0191 15.3201
10 9.8920 9.7621 9.9590
3 5.3754 5.3044 5.4026

5 40 24.8322 25.2150 24.5929
30 20.8000 20.9518 20.4663
20 15.8696 15.9976 15.6527
10 10.1712 10.1609 9.9603
3 5.4487 5.4208 5.3255

9 40 25.6957 25.7093 25.3436
30 21.2281 21.2697 20.9614
20 16.1403 16.1560 15.9153
10 10.2344 10.1990 10.0417
3 5.4281 5.4187 5.3352
Fig. 2 Central displacement response for antisymmetric angle-ply †45Õ-45Õ45Õ-45‡
square SSSS plate „aÕhÄ20, Material B … under in-plane uniform thermal loading
SEPTEMBER 2002, Vol. 69 Õ 687
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Fig. 3 Central displacement response for unsymmetric angle-ply †0Õ15Õ30Õ45‡ square
SSSS plate „aÕhÄ20, Material B … under in-plane uniform thermal loading
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4 Results and Discussions
The nonlinear governing equations of motion for a lamina

composite rectangular plate subjected to transient thermal loa
are solved, analytically using fast converging double Chebys
series approximations. In order to check the accuracy and stab
of the method a convergence study is carried out. Table 1 rev
that the nine-term expansion of Chebyshev series and an in
ment of 0.1 for nondimensional timet are sufficient to yield quite
accurate results. An iterative incremental approach with rela
convergence criteria of 0.01% of each coefficient at every ste
the marching variable is adopted. The in-plane uniform tempe
ture is incremented in small steps. The transient thermal p
buckling responses are obtained and dynamic critical tempera
are estimated. The numerical results for cross-ply and angle
PTEMBER 2002
ed
ing
ev
ility
eals
cre-

ive
of

ra-
st-

ures
-ply

rectangular plates with SSSS, CCCS, CCSS, CSCS, CSSS,
CCCC boundary conditions are presented. Two materials con
ered for the analyses are:
Material A: E1 /E2525, G1250.5E2 , G2350.2E2 , G135G12,
andn1250.25,

a15a0 , a2510 a0 , a0510206 0/c,

r58310206 Kg-Sec2/cm4.

Material B: E15181.0 Gpa,E2510.3 GPa,n1250.28,G125G13
57.17 Gpa,

G2352.39 Gpa, a150.02a0 , a2522.5 a0 ,

a0510206 0/c, r58310206 Kg-Sec2/cm4.
Fig. 4 Central displacement response for symmetric cross-ply †0Õ90Õ90Õ0‡ square
CSCS plate „aÕhÄ20, Material A … under in-plane uniform thermal loading
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Fig. 5 Central displacement response for antisymmetric cross-ply †0Õ90Õ0Õ90‡ square
CCSS plate „aÕhÄ20, Material A … under in-plane uniform thermal loading
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The nondimensional temperature parameters are defined as

lT5a0DT3103 and lTcr
5a0DTcr3103.

The present methodology of solution is validated by compar
the results of nondimensional static critical loads obtained
Noor @22# and Owen and Li@23# using the three-dimensional lin
ear elasticity solution and finite element method, respectively.
comparison of the results is shown in Table 2. It is observed
results are in good agreement and have a maximum differenc
less than 3%.

The central displacement (wc) response for antisymmetric@45/-
45/45/-45# and unsymmetric@0/15/30/45# angle-ply square SSSS
plates for~a/h520 and Material B! are shown in Figs. 2 and 3
respectively. From these plots it is clear that the maximum p
Mechanics
ing
by

he
hat
e of

,
ak

displacement increases with increase in the in-plane tempera
and at a certain temperature level there may be a sudden jum
the deflection but is not observed distinctly.

The central displacement response for four-layer symme
cross-ply CSCS plate~a/h520, Material A! is plotted in Fig. 4.
The deflection response forlT<2.22 do not show discontinuou
jump but for the response atlT52.23, there is a sudden jump i
the deflection at approximatelyt equal to 1000. In fact the jump
in the deflection is not distinct in the plots as the amplitude is v
small. The displacement response for antisymmetric cross
CCSS and CSSS plates~a/h520, Material A! are shown in Figs.
5 and 6, respectively, and similar conclusions can be deduce

It is difficult to estimate dynamic critical temperatures from t
displacement response. In order to estimate the dynamic cri
Fig. 6 Central displacement response for antisymmetric cross-ply †0Õ90Õ0Õ90‡ square
CSSS plate „aÕhÄ20, Material A … under in-plane uniform thermal loading
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temperature, maximum peak deflections versus in-plane temp
ture are plotted for cross-ply and angle-ply plates with differ
boundary conditions and is shown in Fig. 7. Dynamic critic
temperatures are estimated and are given in Table 3. Dyna
critical temperature and post-buckling strength are higher for
antisymmetric cross-ply@0/90/0/90# CCCC plate and the post
buckling strength is lower for a@0/90/0/90# SSSS plate. Dynamic
critical temperature and reserve strength~load carrying capacity
after buckling! for a four layers antisymmetric angle-ply@45/-45/
45/-45# CSCS plate are higher than for four layers symme
@0/90/90/0# and antisymmetric@0/90/0/90# cross-ply CSCS plates
A symmetric cross-ply@0/90/90/0# CSCS plate has higher dy
namic critical temperature than an antisymmetric cross-ply@0/90/
0/90# CSCS plate.

5 Conclusions
The displacement response for laminated composite plates

jected to uniform in-plane dynamic thermal loading is obtain
Dynamic critical temperatures are estimated from the plot
tween maximum peak deflection and thermal loading. It is
served that lamination scheme and boundary conditions have
nificant effects on dynamic critical temperature and rese
strength of the plate. Dynamic critical temperature is higher for
antisymmetric angle-ply laminated plate than for symmetric
antisymmetric cross-ply laminated plates. It is lower for an u

Fig. 7 Dynamic thermal post-buckling response of laminated
composite plates „aÕhÄ20… under in-plane uniform thermal
loading

Table 3 Nondimensional dynamic critical temperatures for
laminated composite square plates „aÕhÄ20…

Material A

Lamination Scheme Boundary Conditions

Nondimensional Dynamic
Critical Temperature

lTcr

@0/90/0/90# SSSS 1.35
CSSS 1.41
CCSS 1.65
CSCS 2.15
CCCS 2.29
CCCC 3.7

@0/90/90/0# CSCS 2.22
@45/-45/45/-45# CSCS 2.64

Material B
@45/-45/45/-45# SSSS 2.06
@45/-45/45/-45# CCCS 3.32

@0/15/30/45# SSSS 0.57
690 Õ Vol. 69, SEPTEMBER 2002
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symmetrically laminated plate. The dynamic critical temperat
and post-buckling strength for an antisymmetric cross-ply pl
are less than for a symmetric cross-ply plate.

Acknowledgment
The research is partially supported by the Council of Scient

and Industrial Research, New Delhi, Grant No. 22~0315!/00/
EMR-II. The support is gratefully acknowledged.

Appendix
Nondimensional parameters and coefficients are

u5
uo

h
, v5

vo

h
, w

5wo

h
, x5

2X

a
, y5

2Y

b
,

l5
a

b
, b5

a

h
, ~N̄x ,N̄x

T!5
~Nx ,Nx

T!b

A11
,

~N̄y ,N̄y
T!5

~Ny ,Ny
T!b

A22
,

~N̄xy ,N̄xy
T !5

~Nxy ,Nxy
T !b

A66
, ~M̂ x ,M̂ x

T!5
~Mx ,Mx

T!hb2

D11
,

~M̄ y ,M̄ y
T!5

~M y ,M y
T!hb2

D22
, ~M̄ xy ,M̄ xy

T !5
~Mxy ,Mxy

T !hb2

D66

q* 5
qa2

4A22h
, lT5a0DT3103, lTcr

5a0DTcr3103,

t5t3A 4A22

h2b2R

L151, L25
A66

A11
l2, L352

A16

A11
l, L45

A16

A11
,

L55
A26

A11
l2, L65

~A121A66!

A11
l

L75
B11

A11h
, L85

B66

A11h
l2, L952

B16

A11h
l, L105

B16

A11h
,

L115
B26

A11h
l2, L125

~B121B66!l

A11h

L135
2

b
, L1452

A66

A11

l2

b
, L1554

A16

A11

l

b
,

L1652
A16

A11

l

b
, L1752

A26

A11

l3

b
, L1852

~A121A66!

A11

l2

b

L1950.5, L2050.5
A66

A11
l, L215

A16

A22
, L225

A26

A22
l2,

L235
~A121A66!

A22
l, L245

A66

A22

L255l2, L2652
A26

A22
, L275

B16

A22h
, L285

B26

A22h
l2,

L295
~B121B66!

A22h
l, L305

B66

A22h

L315
B22

A22h
l2, L3252

B26

A22h
l, L3352

A16

A22b
,

L3452
A26

A22

l2

b
, L3552

~A121A66!

A22

l

b
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Crack-Tip Field of a Supersonic
Bimaterial Interface Crack

J. Wu
Conexant Systems, Inc., 4311 Jamboree Road, Newpo
Beach, CA 92561. Assoc. Mem. ASME

The sextic approach was used to investigate the asymptotic fie
a bimaterial interface crack in the entire supersonic regime a
extended to include the combination of isotropic and homo
neous materials, where the sextic method had been consid
difficult. Application to typical systems was demonstrated.
@DOI: 10.1115/1.1427338#

Introduction
The crack-tip field of a static interface crack between two i

tropic or anisotropic materials has been well understood~@1–3#!.
In the lower part of the supersonic regime, the experimental
theoretical progress in interface dynamic fracture mechanic
isotropic bimaterial systems is represented by the work of Tip
et al. @4#, Liu et al. @5#, Lambros et al.@6#, and Huang et al.@7#.
However, the crack-tip behavior of isotropic bimaterial systems
the upper supersonic regime and that of anisotropic bimate
systems in the entire supersonic regime had not yet been so
by the time of this work, which is the major focus of this bri
note. Based on an early mathematical formulation~@8#!, this prob-
lem was solved using a sextic approach for a given bimate
interface crack composed of any combination of anisotropic
isotropic materials with the crack tip moving at an arbitrary co
stant speed. Application to typical systems was demonstrated

Eigenvalue Problem for the Crack-Tip Field in the Su-
personic Regime

For a bimaterial interface crack shown in Fig. 1, Materials I a
II occupy the upper and the lower half-planes, respectively. T
constant crack-tip speedv is measured with respect to a quiesce
coordinate systemx82o82y8. The moving coordinate systemx
2o2y is attached to the crack tip.

Contributed by the Applied Mechanics Division of for publication in the ASM
JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied
Mechanics Division, September 26, 2000; final revision, July 30, 2001. Assoc
Editor: H. Gao.
Copyright © 2Journal of Applied Mechanics
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The general solution to the stress field for an anisotropic m
rial in the subsonic regime is obtained using the Stroh formal
~@9#!. For a complete description of the mathematical procedu
leading to the results in this work, the reader is referred to@8#. The
special feature in the supersonic regime is that some or all of
six Stroh eigenvaluespi( i 51, . . . ,6) become real, of which only
these three representing upward energy flow~in the positive
y-direction! in the upper half-plane and these three represen
the downward energy flow in the lower half plane should be
lected for the current interface crack problem. A good discuss
on the selection of the proper eigenvalues is given in@10#. Math-
ematically, Stroh showed that the energy flow direction with
spect to they-axis has the same algebraic sign asAiaLia ~@9#!,
where A is the polarization matrix andL the traction matrix.
Physically, the energy flow is associated with the group veloc
It should also be noted that, when an eigenvaluep is real, the
phase velocity of the plane wave associated withp has a direction
~x, y! that can be explicitly expressed in terms ofp as p5y/x
~@9#!. Generally, the phase velocity and the group velocity do
necessarily have the same direction. However, in cases wher
two velocities do have the same direction, the selection of the
eigenvaluep can be made directly based on the algebraic sign
the eigenvalue itself.

For the problem stated above, the eigenvalue problem for
oscillatory indexe and the eigenvectorw can be expressed in
terms of the bimaterial matrixH as

HH* w5lHw,
l5e2pe . (1)

In each half-plane, the displacement and the stress fields are
tained in terms of the stress potential vectorf as

5
u52Im~Bf!,

$s12 s22 s23%
T52 ReS ]f

]z D ,

$s11 s12 s13%
T52 ReS M

]f

]z D ,

(2)

whereB is as defined in@2#. The matrixM is introduced here for
the first time to write the results in a compact form, which
defined in terms of the material densityr and traction matrixL as

M52 irv2B2LPL21, and P5dia@p1 ,p2 ,p3#,

where pi , i 51, 2, 3, are the three Stroh eigenvalues used
constructing the general solution in the corresponding half-pla

The Stroh eigenvalue problem is degenerate in case of a sy
with high symmetry. For example, it has only one independ
eigenvector in the case of an isotropic material, so spe

E

iate
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schemes were used to set up the proper eigensystems~@9,11#!.
Besides, it has been argued that the formulation for a bimate
interface crack does not converge to that for a homogeneous
terial ~@2#!. This work showed that both problems could be solv
elegantly if the following six-dimensional polarization matrix
set up for an isotropic material

A5F 1 2p2 0 1 p2 p2

p1 1 0 2p1 1 1

0 0 1 0 21 11p2
2
G (3)

where the Stroh eigenvaluesp1 andp2 are given by

p15AF v
cL

G2

21, p25AF v
cT

G2

21

and cL and cT are the dilatational and transverse shear wa
speeds, respectively. Eq.~3! defines six independent eigenvecto
that span the proper eigenspace of the sextic problem for the
tropic material.

In the case of homogeneous systems, it was proposed here
if the homogeneous material is divided into two half-spaces al
a plane containing the crack, then the formulation for a bimate
interface crack developed above can be applied directly with
two materials having identical properties. Moreover, there is
difficulty with the convergence of results for the bimaterial sy
tems to that of the homogeneous ones. The example in the fol
ing sections will show that this treatment gives the correct resu

Discussions on the Solutions
If l is an eigenvalue of Eq.~1!, 1/l* must satisfy the equation

too. Therefore, two types of solutions are obtained.

1 Type I Field
When the eigenvalue is not equal to the reciprocal of its co
plex conjugate, i.e.,lÞ1/l* , there are three sets of solution

~e,w!, ~2e* ,w* !, and ~e3 ,w3!, (4)

where the oscillatory indexe5e r1 i em is complex and so is its
corresponding eigenvectorw, e3 is a purely imaginary number
with a corresponding real eigenvectorw3 . For the convenience
of discussion, the stress field associated with this solution
called the Type I field, and is oscillatory. The three eigenval
in this paper are referred to as thebranches, because in genera
they do not correspond to the three fracture modes.

2 Type II Field
When all the three eigenvalues satisfyl51/l* , they are purely
imaginary and result in three real eigenvectors. The solutio
this case can thus be expressed as

~ i em1 ,w1! ~ i em2 ,w2! ~ i em3 ,w3!. (5)

Fig. 1 A half-space crack with its tip moving at a constant
speed v with respect to the quiescent coordinate system
x 8– o 8– y 8
694 Õ Vol. 69, SEPTEMBER 2002
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These eigenvalues can be degenerate. All the three branche
decoupled from each other in this case, and correspond to
mode I, mode II, and mode III crack-tip fields, respective
This solution is designated as the Type II, and is nonoscillato

3 Singular Characteristics
For a real Stroh eigenvaluep, the independent variablez5x
1py becomes real. The corresponding characteristic l
makes an angle ofa5p2tan21(1/p) with the positivex-axis.
There are maximum three singular characteristic lines in e
half-plane. Consider Type I crack-tip field in material I as
example. Using a rectangular coordinate systemx82y8 at-
tached to the singular line~Fig. 2!, it can be shown thats2i

50, i 51,2,3, for z,x8,0. However,s2i approach infinity on
the other side (z,x8.0) of this singular line, according to

ux8u21/21 i e, ux8u21/22 i e* , and ux8u21/21 i e3, for the three
branches of the oscillatory index, respectively.

Application to Typical Bimaterial Systems
In the following cases, only the singularity exponentq was

plotted, which is related to the oscillatory indexe5e r1 i em by
q5

1
2 1em , and the crack-tip deformation field is proportional

r 2q1 i er. The physically meaningful value is limited to 0,q< 1
2

considering the requirement for a finite strain energy and the c

Fig. 2 A singular characteristic line corresponding to a real
eigenvalue in the Stroh eigenvalue problem Eq. „1…

Fig. 3 The real part of the two coupled branches of the oscil-
latory index as a function of the crack-tip speed for the aniso-
tropic niobium-basal sapphire system. The two branches have
identical real parts but with opposite sign. The third branch
always has a zero real part.
Transactions of the ASME
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vergence of the volume integral for the strain energy along
singular characteristic lines in addition to those around the p
of the crack tip.

Anisotropic-Anisotropic Bimaterial Systems. The singu-
larities are calculated for a crack growing along an anisotro
Nb/sapphire interface, having an orientation relations
(111)Nbi(0001)sapphire and @110#Nbi@2110#sapphire, which occurs
in the growth of single crystal niobium thin films on basal sa
phire substrates by molecular beam epitaxy@12#. The coordinates
are chosen such thatx andy- axes are aligned with the basal plan
crystal axis and thec-axis of the sapphire, respectively. The cra
is oriented with its face in thex2z plane, and its tip propagating
in the x-direction, at an arbitrary constant speedv. The elastic
constants were cited from@13# and@14#. The Rayleigh wave spee
(cR), the transverse shear wave speed (cT), and the longitudinal
wave speed (cL) of sapphire and niobium in the crack propagati
direction were calculated. The oscillatory index was compu
using the above formulas and summarized in Figs. 3 and 4.

Isotropic Bimaterial Systems. An example of isotropic bi-
material systems is the PMMA-steel system that has been stu
extensively. The results are shown in Figs. 5 and 6. Huang e
@7# investigated one section of the supersonic regime between
two shear wave speeds for the out-of-plane and in-plane case

Fig. 4 Crack-tip singularity exponent q as a function of the
crack-tip speed for the anisotropic niobium-basal sapphire sys-
tem. Note, qÄ1Õ2¿«m , where «m is the imaginary part of the
oscillatory index «.

Fig. 5 The real part of the two coupled branches of the oscil-
latory index as a function of the crack-tip speed for the isotro-
pic PMMA-steel system. The two branches have identical real
parts but with opposite sign. The third branch always has a
zero real part.
Journal of Applied Mechanics
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directly solving the wave equations. As compared with their wo
the above results are numerically identical to that. This proves
the above approach is mathematically correct.

Homogeneous Anisotropic Systems.The single crystal basa
sapphire is used to demonstrate the application to a homogen

Fig. 6 Crack-tip singularity exponent q as a function of the
crack-tip speed for the isotropic PMMA-steel system. Note, q
Ä1Õ2¿«m , where «m is the imaginary part of the oscillatory
index «.

Fig. 7 Crack-tip singularity exponent q as a function of the
crack-tip speed for the homogeneous anisotropic basal sap-
phire system. Note, qÄ1Õ2¿«m , where «m is the imaginary part
of the oscillatory index «.

Fig. 8 Crack-tip singularity exponent q as a function of the
crack-tip speed for the homogeneous isotropic PMMA system.
Note, qÄ1Õ2¿«m , where «m is the imaginary part of the oscil-
latory index «.
SEPTEMBER 2002, Vol. 69 Õ 695
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anisotropic system. Using the formulation for a homogeneous
tem proposed above, the material properties for the upper
lower half-planes are set identical. The results are shown in Fig
As well expected, the homogeneous system is nonoscillatory,
there are at most two distinct values for the singularity exponeq
at a particular crack speed. It is interesting to note that the cra
tip singularity exponentq reaches a maximum of 0.5 atv
5&cT2

, wherecT2
is the second~larger! transverse shear wav

speed. Obviously, the singularity behavior is sharply differ
from that of the inhomogeneous systems~Figs. 3–6!. Unfortu-
nately, there has been no analytical solution for such a syste
compare with.

Homogeneous Isotropic Systems.The homogeneous system
of PMMA was used to demonstrate the homogeneous isotr
systems. The results are shown in Fig. 8. In fact, the system
homogeneous isotropic material had been solved analytically
the out-of-plane and in-plane cases separately in the 1960s@15#.
The results in the present work match numerically with theirs.
instance, the singularity exponentq reaches a maximum of 0.5 a
&cT , wherecT is the shear wave speed. The purpose of includ
this section here is simply to validate the eigensystem establis
in this work.

Discussions
The sextic approach as described in this work is convenien

treat the asymptotic problem at an arbitrary crack speed for
homogeneous or bimaterial system with either isotropic or an
tropic component materials in the linear elastic regime. The cra
tip field has a weak singularity in most of the supersonic regim
and singularity is absent within some small crack speed inter
in the case of bimaterial systems, while homogeneous syst
have singularity for all crack speed up to the dilatational wa
speed. When the singularity does not exist, it implies that an
ergy equal or above the materials’ intrinsic interface adhesive
ergy is required to sustain the interface crack propagation for
ideally linear elastic materials under consideration, that is, i
equivalent to debonding. In the supersonic regime, anisotropy
gravates crack-tip singularity, while inhomogeneity alleviates
singularity significantly. The conclusions are practically importa
in designing material systems containing interfaces.

From the point of view of energy balance, a crack propaga
due to a finite energy release rate. However, for the linear ela
ity considered here, the crack has a weak singularity, which res
in a zero energy release rate if it is carried out in terms of
conventional definition~@4,5#!. Here it simply assumes that th
weak singularity would still augment the remote loading such t
it is strong enough at the crack tip to propagate it. Besides
should be noted that the oscillatory crack-tip field has the prob
of crack-face contact, which is not covered here.
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Effective Antiplane Dynamic
Properties of Fiber-Reinforced
Composites

X. D. Wang
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This paper provides an theoretical analysis of the properties
fiber-reinforced composite materials under antiplane waves
self-consistent scheme is adopted in calculating the effective
terial constants. A new averaging technique is developed to
count for the effects of the waveform. The model is then use
evaluate the effective dynamic properties of composites with
domly distributed fibers. Typical examples are presented to s
the effects of different pertinent parameters upon the effec
wave speed and the attenuation.@DOI: 10.1115/1.1480819#

1 Introduction
Fiber-reinforced composites are increasingly used in situati

involving dynamic loading, where the evaluation of wave prop
gation will be a main concern~@1#!. Because the interaction be
tween fibers decays slowly with the distance between them
large number of fibers need to be considered simultaneously in
determination of the average properties of fiber-reinforced co
posites. Simplified models, such as multiple scattering met
~@2–4#! and self-consistent method~@5–7#! are usually used to
study the effective dynamic mechanical properties of composi
Because of the difficulties in approximating the multiple scatt
ing from the inhomogeneities, high-order scattering effects
usually neglected in multiple scattering method. This method
been rigorously modified in@8# by introducing more realistic pair-
correlation functions to evaluate the average of scattering wa
accurately. In the self-consistent model~@5#!, the determination of
the effective property is based on the use of direct volume ave
of field parameters. The model will, therefore, be suitable for
cases where the wavelength is much longer than the size o
reinforcements.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 1
2001; final revision, February 25, 2002. Associate Editor: M.-J. Pindera.
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The current study proposed a new volume average proces
evaluating the effective dynamic properties of fiber-reinforc
composites by considering the effect of the waveform, which
ables the treatment of the variation of field parameters in the
inforcements. The results are then implemented into a s
consistent scheme to determine the effective dynamic prope
of fiber-reinforced composites. Numerical examples are provi
to show the effect of the volume fraction of the fibers, the mate
constants, and the loading frequency upon the dispersion an
tenuation properties of the composites.

2 Formulation of the Problem
Consider the antiplane problem of a fiber-reinforced compo

containing randomly distributed circular fibers of radiusR with
volume fractionf, subjected to a harmonic incident wave of fr
quencyv, as shown in Fig. 1. For the steady-state dynamic so
tion of the problem, the time factore2 ivt applying to all the field
parameters will be suppressed.

It is assumed that the composite can be modeled as an effe
homogeneous, isotropic medium, which is governed by the
lowing equations:

¹s52 ivp (1)

s5meg, p52 ivrew (2)

where ¹5(]/]x,]/]y), s and p are the stress and momentu
density, respectively, withs5(txz ,tyz)

T, g5(gxz ,gyz)
T, w be-

ing the antiplane displacement, andme andre the effective elastic
modulus and effective mass density of the composite.

Attention will be focussed on a harmonic antiplane wave in
effective medium of the form

win~x,y!5w0eikex (3)

which represents a wave propagation in thex-direction, with ke
5vAre /me being the wave number of the effective medium
Equation~3! represents the approximate~effective! displacement
field in the composite medium, i.e.,

w~x,y!'w0eikex. (4)

The effective wave field can be related to the real displacem
field w(x,y) using a Fourier integration. Multiplying both sides o
Eq. ~4! with e2 ikex and integrating over a representative volum
V, the volume average ofwin can be obtained

^win&5w05
1

V E
V
w~x,y!e2 ikexdV. (5)

The averages of other field parameters can be obtained simi
Accordingly, the average stress^s&, strain^g&, momentum density
^p& and particle velocitŷ 2 ivw& can be expressed in terms o
average values in the matrix and the fiber as

^ f &5~12f!^ f &m1f^ f & f (6)

with f representing the stress, strain, momentum density and
ticle velocity, with subscriptsm andf refering to matrix and fiber,
respectively. Using the constitutive relations of the matrix and
fiber to eliminatê g&m and ^2 ivw&m from the above equations
following results can be obtained:

^s&5mm^g&1f~m f2mm!^g& f (7)

^p&5rm^2 ivw&1f~r f2rm!^2 ivw& f . (8)

The average strain and particle velocity in the fibers^g& f and
^2 ivw& f can be expressed in terms of that of the effective fie
i.e.,

^g& f5N^g&, ^2 ivw& f5M ^2 ivw& (9)
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with N andM being in terms of the material constants, geome
and frequency. The effective constitutive relation of the compo
can then be determined, such that

^s&5me^g&, ^p&5re^2 ivw& (10)

with

me5mm1f~m f2mm!N, re5rm1f~r f2rm!M . (11)

N andM are in terms of the effective material constantsme andee
and will be determined using a self-consistent model.

3 Self-Consistent Method
To determineN andM in ~9!, the self-consistent scheme deve

oped by Sabina and Willis@5# will be used in the current analysis
The strain and velocity fields around a fiber can be approxima
evaluated by assuming that the effects of other fibers can be
resented by an effective medium. This will then necessitate
solution of a problem that a single fiber is embedded in the eff
tive medium with material constantsme andre .

Consider now the problem of a single fiber embedded in
effective medium subjected to an incident wave given by~3!.
Following the idea of Willis@9#, the stress and momentum densi
can be generally expressed as

s5meg1t, p52 ivrew1p (12)

wheret andp are caused by the existence of the fiber. The res
ing displacement field is equivalent to that of a uniform effecti
medium subjected to body forces and can be represented in t
of a convolution integral using Green’s function for the effecti
medium,

w5win1G* F, (13)

where F521/me(¹t1 ivp) and G52 i /4H0
(1)(ker ) is the

Green’s function satisfying¹2w1ke
2w5d(r ) with H0

(1) being the
zeroth-order Hankel function of the first kind.

Using the constitutive relations of the fiber and the effect
medium, the strain and the particle velocity in the fiber can
expressed in terms oft andp as

g5~m f2me!
21t, 2 ivw5~r f2re!

21p. (14)

Making use of Eqs.~13! and ~14!, the following relations are
obtained within the fiber,

~r f2re!
21p1 ivG* F52 ivwin (15)

~m f2me!
21t2Gg* F5g in, (16)

where Gg5@]G/]x,]G/]y#T. From this equation,t5@txz ,tyz#
andp can be determined.

To obtain an approximate solution including the effect of t
waveformt andp are assumed, in the fiber, to be

Fig. 1 Antiplane wave propagation in fiber-reinforced com-
posites
SEPTEMBER 2002, Vol. 69 Õ 697
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t5F txz
0

tyz
0 Geikex, p5p0eikex. (17)

Since the average displacement and strain of the effective med
are given bŷ win&5w0,^gzx

in&5gxz
0 ,^gyz

in &5gyz
0 , substituting~17!

into ~15!–~16! and taking the average defined by~5!, the follow-
ing algebraic equations can be obtained:

@~r f2re!1v2I /me#p
01 iv~ ikeI 1I 1!/metxz

0 1 ivI 2 /metyz
0

52 ivw0 (18)

ivJ/mep
01@1/~m f2me!2~ ikeJ1J1!/me#txz

0 2J2 /metyz
0 5gxz

0

(19)

ivK/mep
02~ ikeK1K1!/metxz

0 1@1/~m f2me!2K2 /me#tyz
0 5gyz

0

(20)

from which p0, txz
0 , andtyz

0 can be obtained. In these equation
I, I i , J, Ji , K, andKi are given by

I 5
1

A E
A~x!

E
A~j!

G~x2j!eike~x12j1!djdx (21)

I i5
1

A E
A~x!

E
S~j!

G~x2j!eike~x12j1!ni~j!dsdx (22)

J5
1

A E
A~x!

E
A~j!

G,x1
~x2j!eike~x12j1!djdx (23)

Ji5
1

A E
A~x!

E
S~j!

G,x1
~x2j!eike~x12j1!ni~j!dsdx (24)

K5
1

A E
A~x!

E
A~j!

G,x2
~x2j!eike~x12j1!djdx (25)

Ki5
1

A E
A~x!

E
S~j!

G,x2
~x2j!eike~x12j1!ni~j!dsdx (26)

with nj representing the normal direction of the surface~interface!
of the fiber,A(x) and S(j) being the area of integration and i
boundary, defined byx1

21x2
2<R2.

According to~9! and ~14!, N andM used in~11! can be deter-
mined:

N5~m f2me!
21

txz
0

gxz
0 , M5~r f2re!

21
p0

2 ivw0 . (27)

The effective material constants can then be calculated as

me5mm1f
~m f2mm!

~m f2me!

txz
0

gxz
0 , re5rm1f

~r f2rm!

~r f2re!

p0

2 ivw0 .

(28)

The integrals~21!–~26! are very important in obtaining reliabl
solutions. Efforts have been made in evaluating these integrat
to ensure accuracy and efficiency. It should be mentioned tha
considering the effect of the waveform in the average proces
given by Eq.~5!, the current model provides a consistent soluti
of the average field parameters by avoiding the usage of e
average process over fiber distribution, which was used in@5# to
deal with the variation of averaged field parameters with the
sition of the fiber.

4 Results and Discussion
Numerical simulation is conducted to simulate the effective

tiplane dynamic properties of fiber-reinforced composites. As
pected, the solution predicts the existence of complex mate
constantsre and me , which result in a complex wave numbe
ke5kr1 ik i . The antiplane wave in the effective medium give
by ~3! can then be expressed as
698 Õ Vol. 69, SEPTEMBER 2002
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win5w0e2kixeikrx (29)

with the real part of the effective wave numberkr corresponding
to the phase velocityC5v/kr of the elastic wave propagating i
the effective medium and the imaginary partki corresponding to
the attenuation of the wave.

The material constants used in the simulation are

mm51.73~GPa!, rm51200~kg/m3!

Fiber 1, m f58.36~GPa!, r f511300~kg/m3!;

Fiber 2, m f54.18~GPa!, r f55650~kg/m3!;

Fiber 3, m f51.05~GPa!, r f51410~kg/m3!

corresponding to material combinations 1, 2, and 3~m1, m2, and
m3!, respectively.

Figure 2 shows the variation of phase velocityC with normal-
ized loading frequencykmR with different volume fraction~f! for
material combinations 1 and 2 in whichkm5vArm /mm is the
wave number in the matrix. Figure 3 shows the attenuation of
composite for different frequencies and volume fractions. A no
worthy feature of the attenuation curves is the presence o

Fig. 2 Phase velocity for material combinations 1 and 2

Fig. 3 Attenuation for material combinations 1 and 2
Transactions of the ASME
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Fig. 4 Phase velocity for fÄ0.2

Fig. 5 Attenuation for fÄ0.2

Fig. 6 Normalized phase velocity for fÄ0.27
Journal of Applied Mechanics
‘‘resonance’’ effect at specific frequencies. With the increase
volume fraction the effective medium shows stronger dispers
and attenuation properties.

To evaluate the effect of material combination directly, t
phase velocity and attenuation of the composite for material c
binations 1, 2, and 3 are depicted in Figs. 4 and 5 forf50.2. As
the material mismatch becomes smaller, the dispersion and att
ation of the composite decrease, as evidenced by the fact tha
material combination 3 the phase velocity is almost frequen
independent and the attenuation is much lower than that of m
rial combinations 1 and 2.

The prediction from the current method has been compa
with results from other existing techniques for steel~fibre!/
aluminum~matrix! composites~@7#!. The normalized phase veloc
ity and the specific attenuation capacity forf50.27 are depicted
in Figs. 6 and 7, respectively, whereC is normalized by the phase
velocity corresponding to zero-frequency,Cs, and the specific at-
tenuation capacity is defined as 4pki /kr . It is interesting to men-
tion that the current result is similar to that given by Kim@7# for
low frequencies (kmR,1). Significant difference, however, ca
be observed for higher frequencies (kmR.1).
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Elasticity Solution for a Laminated
Orthotropic Cylindrical Shell
Subjected to a Localized Longitudinal
Shear Force
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A three-dimensional elasticity solution is presented for the t
problem. The solution is in terms of a double Fourier series in
surface-parallel directions and a power series in the thickn
direction. On the basis of this solution, it is shown that the cl
sical lamination theory is inadequate for this problem because
steep displacement and stress gradients near the load canno
captured by it correctly even if the shell is thin.
@DOI: 10.1115/1.1480823#

Introduction
Of late, there has been considerable interest in the develop

of three-dimensional elasticity solutions for laminated compo
shells. Confining attention to cylindrical shells under static m
chanical loading, one finds that such solutions have been obta
for the cases of cylindrical bending due to sinusoidal surface t
tions ~@1,2#!, axisymmetric deformation due to sinusoidal as w
as band loading~@3,4#!; and general deformation due to sinuso
dally varying tractions~@5,6#!, pinching loads~@7#!, and a single
patch radial load~@8#!. This sort of rigorous analysis, albeit fo
certain specific boundary conditions, layups, and loading, is ju
fied because it is now well known that nonclassical influences
thickness-shear and thickness-normal strain are significant
composite structures and that there is a need to quantify the e
of classical shell theories against some three-dimensional be
mark solutions which automatically account for the nonclass
effects.

A look at the literature cited above reveals that all the availa
elasticity solutions are for smoothly varying or localized rad
loads. Localized loading transmitted through attachments like s
port brackets, lifting lugs, nozzles, etc., can result in signific
shear forces besides radial forces, and such forces are ofte
counted for, as for instance in pressure vessel design~@9#!. The
objective of this note is to provide a baseline elasticity solution
the case of a localized longitudinal shear force and to examine
errors of classical lamination theory when applied to this proble

Formulation and Solution
An N-layered cylindrical shell is subjected to a shear forceP,

applied in the longitudinal direction, on a small rectangular pa
on the outer surface as shown in Fig. 1. The material axes of
layer coincide with the geometricr -u-z axes, so that the stress
strain law is given by

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
24, 2001; final revision, December 15, 2001. Associate Editor: A. K. Mal.
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s i5SCi j « j , i , j 51~r !,2~u!,3~z!;

tk5Ckkgk , k54~rz!,5~ru!,6~uz!. (1)

The ends are axially restrained but otherwise free to move, i.

at z50,L: uz5tzr5tzu50. (2)

The boundary conditions at the lateral surfaces and the interf
are

at r 5Rmax: s r5t ru50 and t rz5qz

at r 5Rmin : s r5t ru5t rz50

across any interface:

ur ,uu,uz,s r ,t rz,t ru are continuous (3)

whereqz stands for the shear force per unit area correspondin
the applied local loadP. For later use,qz is written in the form of
the following double Fourier series:

qz5 (
m51,3,...

(
n50,1,2,..

qmn sin~mpz/L !cosnu (4)

where

qm05~2P/p2mLpRmax!sin~mpLp/2L !sin~mp/2!;

qmn5~8P/p2 mnLPRmaxup!sin~mpLp/2L !sin~mp/2!sin~nuP/2!

for n>1

andLP anduP are as shown in Fig. 1.
The above three-dimensional boundary value problem can

solved by using the displacement approach as follows. The th
equilibrium equations with respect tor -u-z coordinates are first
expressed in terms of the displacementsur , uu , anduz to yield
three coupled partial differential equations. Then the displa
ments are assumed to vary harmonically in theu andz-directions
as

~ur ,uu ,uz!5h@f r cos~mpz/L !cosnu,

fu cos~mpz/L !sinnu, fz sin~mpz/L !cosnu] (5)

corresponding to one harmonic~i.e., m,n combination! of qz . It
can easily be verified that the above displacement variations
tomatically satisfy the end conditions~Eq. ~3!!. They also reduce
the system of partial differential equations to the following ord
nary differential equations:

@C11~j1t !2D21C11~j1t !D12C55n
22C222C44s

2~j1t !2#f r

1@~C551C12!n~j1t !D12~C551C22!n#fu

1@~C131C44!s~j1t !2D11@~C132C23!~j1t !s#fz50

2@~C551C12!n~j1t !D11~C551C22!n#f r1@C55~j1t !2D2

1C55~j1t !D12C22n
22C552C66s

2~j1t !2#fu

2@~C231C66!ns~j1t !#fz50

2@~C131C44!s~j1t !2D11@~C441C23!~j1t !s#f r

2@~C231C66!ns~j1t !#fu1@C44~j1t !2D2

1C44~j1t !D12C66n
22C33s

2~j1t !2#fz50 (6)

whereD25d2/dj2; D15d/dj; s5mph/(2L); t52R0 /h, where
R0 is the mean radius of the shell as shown in Fig. 1;j is a
nondimensional radial coordinate given byj52(r 2R0)/h.

The above equations have variable coefficients and hence
to be solved by using power series. The only associated sing
point is at r 50 ~i.e., j522R0 /h!, and hence a power serie
solution aboutj50 as given by

st
© 2002 by ASME Transactions of the ASME
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`

j jHi~ j ! for i 5r ,u,z (7)

would be convergent at every point in the shell domain21<j
<1. The methodology for finding out the coefficientsHr( j ),
Hu( j ), and Hz( j ) is straightforward~@10#!—substitution of Eq.
~7! in Eqs.~6! and equating the coefficient of each power ofj to
zero yields the coefficients as

Hr~ j !,Hu~ j !,Hz~ j !5(
k51

6

G~k!@dr~ j ,k!,du~ j ,k!,dz~ j ,k!# (8)

whereG(k) are six undetermined constants anddr( j ,k), etc., are
known quantities obtained using recurrence relations~@11#!. For
the sake of brevity, the recurrence relations are not given her

Equation~8! is applicable for any particular layer, and henc
for the N-layered shell, there would be 6N unknowns. These are
determined by enforcing the 6N lateral surface and interface con
ditions ~Eq. ~3!!.

Results and Discussion
A ~90 deg/0 deg/90 deg! shell with L/R054 is considered for

numerical studies. The material properties, typical of hig
modulus graphite-epoxy, are taken as

EI /ET525 GLT /ET50.5 GTT /ET50.2

nLT5nTT50.25.

The patch size is taken to beLp50.04L and up50.04p. The
results are presented in terms of the following nondimensio
parameters:

Ui* 5ELR0ui /P for i 5r ,z

~s i* ,t i j* !5R0
2~s i ,t i j !/P for i , j 5r ,u,z.

For any harmonic, the number of terms taken in the Taylor’s se
is such as to obtain four-digit convergence of the results; the n
ber of harmonics considered is such that an increase ofmmax or
nmax by 10 does not affect the final results by more than 0.5%

Table 1 presents the variation of the surface-parallel stresse
the close neighborhood of the patch in both the axial and circ
ferential directions. These are presented at criticalj values at
which the stresses reach high magnitudes. It should be noted
sz andsu are antisymmetric aboutz5L/2 while tuz is symmetric;
similarly aboutu50, sz andsu are symmetric whiletuz is anti-
symmetric. Table 1 also includes values calculated using the c

Fig. 1 Geometry and loading
Journal of Applied Mechanics
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sical lamination theory based on Love-Kirchhoff hypothesis—
actual shell theory employed is that in which no further assum
tions besides Love-Kirchhoff hypothesis are made, commonly
ferred to as generalized Langhaar-Boresi theory~@12#!. The corre-
sponding solutions are based on the well-known Navier appro
with assumed harmonic variations of the displacements for e
harmonic of the load, leading to simple algebraic equations wh
directly yield the displacements. The harmonic variations in
axial and circumferential directions are the same as in Eq.~5!.
Results convergent upto four significant digits are obtained
summing the harmonics; in Table 1 they are presented in norm
ized form with respect to the corresponding elasticity values.

From Table 1, it can be seen thatsz is predominant compared
to the other two surface-parallel stresses, which are, however

Table 1 Axial and circumferential variations of the surface-
parallel stresses
SEPTEMBER 2002, Vol. 69 Õ 701
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Fig. 2 Axial variation of longitudinal stress

Fig. 3 Axial variation of circumferential stress

Fig. 4 Axial variations of u r and u z
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negligible. CST errors decrease with increasingR0 /h ~denoted by
Shereafter! as can be expected, but the errors are significant e
for thin shells withS5500. Further, CST predictions are muc
worse forsu compared to the other two stresses. Plots of the a
variations ofsz andsu are presented in Figs. 2 and 3, which sho
that steep stress gradients occur close to the load patch as c
expected. The CST predictions are close to the elasticity va
away from the load patch, but start diverging as one approac
the load.

Axial variations of the displacementsur anduz are presented in
Fig. 4. These displacements are antisymmetric and symme
respectively, with respect to midspan. One can notice sud
steep gradients of both the displacements near the load, which
not captured by CST. This can be explained as follows. The
plied loading—a shear stresst rz—results in nonzero shear strai
g rz , a strain totally neglected in CST. This strain depends on
displacement gradients—uz,r and ur ,z—and hence, it should be
expected that bothuz and ur cannot be accurately predicted b
CST. The displacement errors directly translate into errone
predictions of the various stresses.

Finally, Fig. 5 presents the decay oft rz through the thickness a
the center of the load patch. This shows that the decay patte
more or less identical for all values ofS, and that significant
transverse shear occurs in the top two layers.

Conclusion
A baseline elasticity solution has been obtained for a cross

cylindrical shell subjected to a localized longitudinal shear for
The results presented show that steep stress-gradients occur
to the load and that a classical shell theory based on Lo
Kirchhoff hypothesis is inadequate to capture these gradients
rectly.
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Bubble Shape in Non-Newtonian
Fluids

D. De Kee and C. F. Chan Man Fong
Department of Chemical Engineering, Tulane University
New Orleans, LA 70118

J. Yao
Department of Physics and Reengineering, Xavier
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Bioenvironmental Research

The study of the behavior of bubbles in complex fluids is of ind
trial as well as of academic importance. Bubble velocity-volu
relations, bubble shapes, as well as viscous, elastic, and sur
tant effects play a role in bubble dynamics. In this note we ext
the analysis of Richardson to a non-Newtonian fluid.
@DOI: 10.1115/1.1480822#

Introduction
The motion of bubbles in non-Newtonian fluids is of consid

able importance and has attracted a lot of interest in the past
decades. De Kee et al.@1# have recently reviewed this topic. On
of the outstanding problems in this area is the experimental
servation of an abrupt jump in the terminal velocity of a risi
bubble in some non-Newtonian fluids at a certain critical volum
It is now generally accepted that viscoelastic effects as wel
surface tension are among the factors that contribute to this j
discontinuity. Rodrigue et al.@2,3# have proposed a few criteria
based mainly on dimensional analysis, that have successfully
dicted the existence of the jump discontinuity.

This jump discontinuity has also been associated with the sh
of the bubble. Liu et al.@4# have proposed that the jump disco
tinuity occurs at a critical capillary number when a cusp is s
denly formed at the tail end of the bubble. The sudden transi
from rounded to pointed end of a bubble rising in a fluid w
observed by Rumscheidt and Mason@5# but no jump discontinuity
in the velocity was reported. Further comments on the criter
proposed by Liu et al.@4# are given in Rodrigue et al.@3#.

The formation of a cusp on the free surface in flows at l

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
29, 2001; final revision, March 4, 2002. Associate Editor: D. A. Siginer.
Copyright © 2Journal of Applied Mechanics
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Reynolds number has been investigated by various authors~@6–
9#!. Noh et al.@10# have computed the deformation of a bubb
rising in a non-Newtonian fluid and have observed a tende
towards the formation of a cusp at the tail end as the capill
number increases. Analytical models are appropriate for dem
strating the existence of such a singular point. The models
ployed by Richardson@6# and by Jeong and Moffat@9# are par-
ticularly appropriate for resolving such difficult free surfac
problems. However, it should be pointed out that analytical m
els are applicable to idealized problems. In the case of a ris
bubble we need to consider the bubble to be two dimensio
Solving an idealized problem is usually the first step towards so
ing a complex problem. Here, we extend the analysis of Richa
son @6# to a non-Newtonian fluid.

Mathematical Model
The present flow is a steady slow flow and the constitut

equation considered by Chan Man Fong and De Kee@11# is ap-
propriate. The chosen constitutive equation can be written as

t52h0~12a0II !g~1!2a1g~1!•g~1!2a2g~2! (1)

wheret is the extra stress tensor,g (1) and g (2) are the first and
second rates of deformation tensors, respectively, as define
Bird et al. @12#; h0 , a0 , a1 , and a2 are constants and I
5trg (1)

2 .
We consider a two-dimensional flow in the usual~x, y! plane

with velocity components~u, v!. The fluid is incompressible and
we introduce a stream functionc(x,y) defined as

u5
]c

]y
, v52

]c

]x
. (2)

Combining Eqs.~1! and ~2! yields the stress componentstxx ,
txy , andtyy and they are given by

txx522h0~12a0II !
]2c

]x]y
2a1~¹2c!22a2F2

]c

]y

]3c

]x2]y

22
]c

]x

]3c

]x]y224S ]2c

]x]yD 2

22
]2c

]y2 S ]2c

]y22
]2c

]x2 D G (3a)

txy52h0~12a0II !S ]2c

]y22
]2c

]x2 D2a2F]c

]y S ]3c

]x]y22
]3c

]x3 D
2

]c

]x S ]3c

]y32
]3c

]x2]yD12
]2c

]x]y
~¹2c!G (3b)

tyy52h0~12a0II !
]2c

]x]y
2a1~¹2c!22a2F2

]c

]x

]3c

]x]y2

22
]c

]y

]3c

]x2]y
12

]2c

]x2 S ]2c

]y22
]2c

]x2 D24S ]2c

]x]yD 2G
(3c)

II52~¹2c!2 (3d)

where¹2 is the Laplacian.
The equations governing creeping flows can be written as

]p

]x
52S ]txx

]x
1

]txy

]y D (4a)

]p

]y
52S ]txy

]x
1

]tyy

]y D (4b)

wherep is the pressure.
Combining Equations~3a!–~4b! and eliminatingp yields

st
002 by ASME SEPTEMBER 2002, Vol. 69 Õ 703
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cta,
h0H ~12a0II !¹4c2a0F2
]II

]y

]

]y
~¹2c!12

]II

]x

]

]x
~¹2x!

14
]2II

]x]y

]2c

]x]y
1S ]2II

]y22
]2II

]x2 D S ]2c

]y22
]2c

]x2 D G J
2a2F]c

]y

]

]x
¹4c2

]c

]x

]

]y
¹4cG50. (5)

In the case of a Newtonian fluid (a05a15a250), Eq. ~5!
reduces to a biharmonic equation andc is given by Richardson
@6#

c5Re~ z̄f~z!1x~z!! (6)

where Re denotes the real part,z(5x1 iy) is the complex vari-
able, the bar denotes the complex conjugate;f andx are analytic
functions ofz.

Equation~5! is a nonlinear equation and is difficult to solve. W
consider the simpler case ofa050. This implies that the viscosity
of the fluid is constant.

De Kee et al.@13# have shown that the jump discontinuity ca
not be attributed to the shear thinning effect. Thus puttinga0
50 is probably not a serious limitation. It can be seen that in t
case,c as given by Eq.~6! is also a solution. Further, using th
theorem of Tanner and Pipkin~@12#! gives the pressurep as

p5pN1
a2

h0

D

Dt
pN1S a1

2
2

a2

4 D II (7)

wherepN is the pressure for a Newtonian fluid andD/Dt is the
material derivative.

The pressurepN is given in Richardson@6# and can in our
notation be written as

pN524h0 Im@f8~z!# (8)

where Im denotes the imaginary part and the prime denotes
derivative with respect to the argument.

Noting thatf andx are analytic functions, we can deduce th

¹2c52f8; (9a)

]2c

]y22
]2c

]x2 52~2f81 z̄f91x9! (9b)

]2c

]x]y
5Im~zf̄92x9!. (9c)

The stress components andp can be expressed in terms off, x,
andz.

If ~Xds, Yds! are the~x, y! components of the force exerte
across a line elementds,

~X1 iY!ds5 ip~dx1 idy!2~txy1 i tyy!dx1~txx1 i txy!dy.
(10)

The boundary condition on the surface of the bubble is given
~@6#!

~X1 idY!ds5sdS dz

dsD (11)

wheres is the surface tension.
Equation ~11! can be expressed in term off, x, and z and

following the analysis given in Richardson, we may conclude t
a cusp might exist at the tail end of the bubble.

Discussion
In the present analysis it is assumed that the surface tensions is

constant. In reality it is a function of~x, y!, especially if contami-
nants and polymer molecules are present. Thus we are still
definitely certain that a cusp is formed at the rear end of
bubble. Experimentally it is not possible to verify that a point
704 Õ Vol. 69, SEPTEMBER 2002
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end is a true cusp. However, it is beyond doubt that the ju
discontinuity is related to the existence of a pointed end~true cusp
or not! and any attempt at explaining the jump discontinuity nee
to take into account the nonspherical shape of the bubble.
stated earlier the existence of a pointed end is a necessary bu
sufficient condition for the occurrence of a jump discontinuity.

Joseph@14# reported that in non-Newtonian fluids cusping o
curs suddenly whereas in Newtonian fluids the transition to cu
ing is gradual. This observation may partly explain the jump d
continuity. De Kee and Chhabra@14# did not observe a sudde
cusp formation and from their figures we are led to believe t
the change of shape is gradual.

The role of shear thinning on the shape of the bubble ne
further examination. Based on a qualitative analysis, Chan M
Fong and De Kee@11# concluded that elasticity will deform a
spherical bubble into a tear drop shape whereas shear thin
will deform it to an ellipsoidal shape. We need to extend t
present analysis to includea0 .

Hassager@15# has observed a negative wake behind bubbles
non-Newtonian fluids. This implies that there is a considera
element of extensional flow around the bubble and this will e
hance the formation of a cusp. It is also relevant to note tha
Richardson’s analysis, the flow is in the negativex-direction
which corresponds to a negative wake.

At present the empirical criteria proposed by Rodrigue et
@2,3# seem to be the most appropriate to use to determine
existence of the jump discontinuity. The jump discontinuity is
stability and bifurcation problem and it is not easy to solve suc
complex free-surface problem.

The above analysis shows that the formation of a genuine c
is possible for both Newtonian and second-order fluids. It see
very unlikely that the jump discontinuity in the bubble veloci
can be attributed to the cusp formation. It is most likely due to
discontinuity in the surface forces, as pointed out recently
Rodrigue and De Kee@16#. A study of the convection of
adsorbed surfactants at the surface would also be desirable.
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Dynamic Stability of a Rotor Partially
Filled With a Viscous Liquid
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By means of the obtained explicit expressions of dynamic fo
acting on a rotor partially filled with a viscous liquid, the equa
tions of motion are derived. The corresponding eigenvalue pr
lem is solved accurately in correcting to the first order of mag
tude ofRe21/2. Dynamic stability of the rotor is studied in deta
and some valuable results are obtained. We can regulate
stable interval so long as we properly choose the value of exte
damping. @DOI: 10.1115/1.1458553#

1 Introduction
Here the perturbed motion of a spinning rigid rotor filled pa

tially with a viscous liquid is studied. The problem is of technic
importance to fluid-cooled turbines as well as to spin-stabiliz
satellites or rockets containing liquid fuels.

Unfortunately, the above-mentioned perturbed motion of
fluid-structure coupled system is somewhat unstable over s
spinning ranges. Stability of a rotor partially filled with an invi
cous liquid has already analyzed. Wolf@1# and Kuipers@2# ana-
lyzed undamped and damped rotors, respectively. Zhang, T
and Tao@3# gave a further general discussion on this topic a
obtained some more general results. Up to now, however, a r
partially filled with a viscous liquid has not been discussed ext
sively. Hendricks and Morton@4# analyzed a circular whirling
motion of the rotor and gave the viscosity correction by mean
Copyright © 2Journal of Applied Mechanics
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a procedure introduced by Greenspan, where not all the boun
conditions were satisfied. Holm-Christensen and Tra¨ger @5# di-
rectly used the full Navier-Stokes equations and solved them
merically, the procedure is rather time-consuming and sensitiv
the initial guess.

In this paper, the explicit expressions of dynamic forces act
on a rotor partially filled with the viscous liquid are used and t
dynamic stability of the coupled system is discussed. The eq
tions of motion are obtained. The corresponding eigenvalue p
lem is solved accurately in correcting to the first order of mag
tude of Re21/2.

2 Dynamic Analysis of the Rotor
A rigid cavity rotor is mounted symmetrically in the middle o

a massless elastic uniform shaft supported by two identical b
ings at the shaft two ends. The rotor spins at a constant rateV.
The flow in the rotor is assumed to also be of plane motion. T
fixed Cartesian coordinate systemso2yz and the spinning Carte
sian coordinate systemsc2jh are showed in Fig. 1. The supe
imposed disturbed motion of the center of the rotor,c, is assumed
to be a small whirl motion with angular speedv. Referred to the
fixed coordinate system, the disturbed motion of the pointc can be
described as

yc5D1eivt, zc5D2eivt (1)

whereD1 and D2 are complex parameters and may be unequ
SupposingFy andFz are the dynamic forces acting on the rot
by the perturbed liquid, we have~Tao and Zhang@6#, also see the
Appendix!

Fig. 1 Analytic model
FFy

Fz
G5 1

2
ra2v2pF M11M21«~12 i !~K11K2! 2 i ~M12M2!2«~11 i !~K12K2!

i ~M12M2!1«~11 i !~K12K2! M11M21«~12 i !~K11K2!
G FD1

D2
Geivt (2)
where bothFy andFz are complex, and

M1,25
2~v6V!22v2

~11g!~v6V!2v2 ,

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 1
2000; final revision, Sept. 26, 2001. Associate Editor: D. A. Siginer.
K1,25A 2

v6V
~v6V!2

v21
3

b2 ~2~v6V!22v2!

Fv21
1

b2 ~2~v6V!22v2!G2 ,

«5~Re!21/2, Re5
a2v0

v
, v05~k/mR!1/2, g5

a21b2

a22b2 .8,
002 by ASME SEPTEMBER 2002, Vol. 69 Õ 705
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Even if v2V50, K2 can also be determined as zero.mR andk are
the mass of the rotor and the rigidity of the flexible shaft. Ifn→0,
then Re→`, therefore~2! will degenerate into the result of th
inviscid case.

Taking the external dampingCe into account, the equation o
motion of the rotor, in the fixed coordinate system, is

FmR

mR
G F ÿc

z̈c
G1FCe

Ce
G F ẏc

żc
G1Fk

k
G Fyc

zc
G5FFy

Fz
G . (3)

Substituting~1! and ~2! into ~3!, we get the characteristic equa
tions as
r

r
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$mc@M j1«~12 i !K j #1mR%v22 iCev2k50 (4)

~ j 51,2! (5)

wheremc5ra2p denotes the mass of the liquid needed to fu
fill the cavity. Introducing the following nondimensiona
parameters

m5
mc

mR
, l5

v

v0
, S5

V

v0
, C5

Ce

2mRv0
,

~4! and ~5! can be reduced to the follow characteristic equatio
of l:
H mF «~12 i !A 2

l6S

~S6l!2S l21
3

b3 ~2~S6l!22l2! D
S l21

1

b3 ~2~S6l!22l2! D 2 ~~11g!~S6l!22l2!G
12~S6l!22l21~~11g!~S6l!22l2!J l22~2iCl11!~~11g!~S6l!22l2!50 (6)
al
no
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hen
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e
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y
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-
nd

ting
where the positive and negative sign correspond with~6! and~7!,
respectively.

All the discussions in the paper are based only on the first o
of magnitude of« ~Tao and Zhang@6#!, therefore thel in ~9! can
be written as

l5l01«l1 . (7)

Substituting~7! into ~6!, we get

~m1g!l0
41~62S~2m1g11!22iCg!l0

31~~2m1g11!S22g

74iCS~11g!!l0
222~11g!S~ iCS61!l02~11g!S250

(8)

and

@~2m1g11!~6S1l0!22~m11!l0
2#2l0l1

1@2~2m1g11!~6S1l0!l122~m11!l0l1#l0
2

1~12 i !mF2~2iCl011!~2gl0l162S~11g!l1!

22iCl1@~11g!~6S1l0!22l0
2#50 (9)

corresponding the power«0 and«, respectively, in which

F5A 2

l06s

~l06s!2S l0
21

3

b3 ~2~6S1l0!22l0
2! D

S l0
21

1

b3 ~2~6S1l0!22l0
2! D 2

3@~11g!~6S1l0!22l0
2#.

There are two algebraic characteristic equations with fourth o
in ~8! and~8! has eight eigenvaluesl0,j ( j 51,2 . . . 8) inall. l1, j
then can be obtained from~9!. For any givenS, if the amax
5maxj@Re(ilj)#<0, the rotor with spinning rateS is stable.

3 Results
For comparing with previous results~Hendricks and Morton,

@4# and Christenson and Tra¨ger, @5#!, the same values of param
etersm50.206, b50.67, Re52.53105 are used. The damping
values are taken asC50.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6 succe
der

der

-

s-

sively. Figure 2 shows the numerical results ofamax;S. The value
S5S0 is corresponding toamax50. It is obvious that the lower
spin regionS,S0 is the stable region. The smaller the extern
damping C, the larger the stable region. However, there is
stable region when the Re is beyond the value 2.53105.

It is worth showing the results of Re52.53104. First, taking
C50.005, 0.01, there are two stable intervals in the low and h
spinning regions separately. Figure 3 shows the high cases. W
C<0.002, however, the stable interval in the high-spin reg
disappears. whileC50.45, however, the stable interval in th
low-spin region is minimum (S050.938). This means that if the
value ofC increases or decreases, the stable interval will alw
extend ~Fig. 4!. However, it extends whenC decreases in the
result of Hendricks and Morton@4# and the case is on the contrar
in the result of Christenson and Tra¨ger @5#.

The characteristic Eqs.~6! can be derived, and it becomes ve
easy to discuss the dynamic stability of a spinning rotor partia
filled with viscous liquid.

1. The form of the characteristic Eqs.~9! seems rather com
plex, there are only two fourth-order algebraic equations a
they only have eight eigenvalues to evaluate in connec
with the first order of«.

Fig. 2 When Re Ä2.5Ã105, amax varies with S. The stable in-
tervals in the lower span speeds are shown.
Transactions of the ASME



t

i

s

ary

ial

the
,

it
r-

f

d

lly
2. Taking the larger Reynolds number Re52.53105, the liquid
appears almost inviscid. In this case there is only one sta
interval in the low spin region. While Re52.53104, how-
ever, the liquid appears somewhat viscous and another s
interval in the high spin region occurs.

3. When Re52.53104, the stable interval in the low spin re
gion can be at minimum if the value of the external damp
is properly chosen.
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Appendix

A Brief Derivation of Eq. „2…. Consider the transverse mo
tion of the rotor in they-direction only, i.e.,

yc5D1eivt, zc50

and nondimensionalize the velocity byD1v, the time by 1/v, the
angular speed byv, the length bya, the pressure byraD1v2,
wherer is the density of the fluid, anda is the inner radius of the
rotor. Introducing a perturbed stream functionc, then the equation
of motion of the viscous fluid in the rotor is

]~Dc!

]t
2

1

Re
DDc50 S D5

]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]u2D . (A1)

Stokes numbers is Re5a2v/n. The kinematic boundary condition
are taken as

Fig. 3 When Re Ä2.5Ã104, amax varies with S. The stable in-
tervals in the lower span speeds are shown, but those in the
higher speeds are not shown.

Fig. 4 When Re Ä2.5Ã104, S0 varies with C. A minimum sable
interval exists.
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c50,
]c

]r
50 (A2)

~r 51! (A3)

1

b

]c

]u
5

]h

]t
(A4)

~r 5b! (A5)

whereh is the deviation of free surface. The pressure bound
conditions are taken as

pru5
1

ReS 1

r

]u

]u
1

]v
]r

2
v
r D50, prr 52p1

2

Re

]u

]r
50.

(A6)

p in ~A6! can be eliminated with the equation of circumferent
motion. Finally, we obtain

2
]2c

]t]r
1

2V

b

]c

]u
52

]P

b]u
1

1

ReS 2
]3c

]r 3 2
1

b

]2c

]r 2

2
3

b2

]3c

]u2]r
1

4

b3

]2c

]u2 1
1

b2

]c

]r D (A7)

whereP is the potential of the inertial force taken as

P52
1
4r bei ~ t1u1Vt !1e2 i ~ t1u1Vt !1ei ~ t2u2Vt !1e2 i ~ t2u2Vt !c.

(A8)

h in ~A7! can also be eliminated by~A4!.
Corresponding to the first term of the right-hand side of~A8!, c

can be taken as

c15w~r !ei ~ t1u1Vt !.

With the boundary conditions~A2, A3, A4, A5, andA7!, c1 can be
obtained as

c15
12 i

4N1M 1
S 12

A1

N1
D F2

1

2 S ~11 i !N11
1

2D r

1
1

2 S ~11 i !N12
3

2D 1

r
1r 21/2E2~1!E1~r !Gei ~ t1u1Vt !

where

E6~r !5e6N1r 6 i ~N1r 2p/4!

Carrying the same procedures for the remaining terms on
right-hand side of~A8!, c2 , c3 , and c4 can also be obtained
respectively. The stream function is then taken as

c5c11c21c31c4 .

Next, consider the transverse motion of the rotor in thez
direction:

yc50, z15D2e
ivt

after a rather lengthy deduction, formula~2! is derived.
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Dynamic Stability of a Flexible
Spinning Cylinder Partially Filled
With Liquid

M. Tao
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W. Zhang
Professor, Mem. ASME
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Fudan University, Shanghai 200433, P. R. China

Dynamic stability of a flexible spinning cavity cylinder partial
filled with liquid is discussed in the paper. The cylinder is assum
to be slender. Choosing characteristic quantities and estima
the orders of magnitude of all terms in the governing equatio
and boundary conditions, the three-dimensional flow in the sl
der cylinder is reduced to a quasi-two-dimensional flow. Using
known formulas of a two-dimensional dynamic force acting on
rotor and regarding the slender cylinder as a Bernoulli-Eul
beam, the perturbed equations of the liquid-filled beam-wise
inder are derived. The analytical stability criteria as well as th
stability boundaries are obtained. The results further the study
this problem. @DOI: 10.1115/1.1458554#

1 Introduction
Dynamic stability of a rotor partially filled with liquid has al

ready been discussed extensively, however, there are few pa
in the literature dealing with flexible spinning cylinders. The re
son is that the flow in the deformed cylinder is three dimension
Dynamic pressure of the liquid is effected by the cylinder defl
tion. It is difficult to obtain analytical formulas of the dynam
force acted on a cylinder by a liquid. Crandall@1# discussed the
problem first by giving an outline of the problem only. Zhang@2#
studied the problem in greater detail, but the cylinder is co
pletely filled with liquid and then no free surface should be co
sidered. In this paper a fresh start is made. By virtue of the e
mation of the order of magnitude of all the terms in the equatio
the three-dimensional flow is then reduced to the quasi-t
dimensional flow mathematically because of the slender featur
the cylinder and its small deflection in practice. Thus the probl
is greatly simplified and a series of analytical results are obtai
in this paper.

2 Simplification of the Problem
A uniform slender cylindrical cavity rotor is simply supporte

at its two ends as shown in Fig. 1. The length and inner radiu
the cylinder are 2L and a, respectively. The cylindrical rotor is
partially filled with liquid in the cavity. The rotor spins at a con
stant speedV without perturbation. The contained liquid is un
formly attached to an inner wall under the action of centrifug
force and synchronously spins as a rigid body with the sameV.
The inner radius of the steady spinning motion of the solid-fl
coupled system. Thus a small perturbed whirl motion of the ro
with whirl speedv is superimposed on it. Introducing the fixe

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 1
2000; final revision, Sept. 26, 2001. Associate Editor: D. A. Siginer.
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Cartesian coordinate systemo82x8y8z8, the rotating Cartesian
coordinate systemo2xyz with spinning speedV aroundz8-axis
and the corresponding cylindrical coordinate systemo2roz,
wherez andz8-axes coincide with the undisturbed spinning dire
tion ando is the middle point of the cylinder. During the whirling
liquid also undergoes a perturbed motion. Letu, v, andw be the
relative perturbed velocities of the liquid in ther, u, z-directions,
respectively; in the cylindrical coordinate systemo2roz, Fr ,
Fu , and Fz are the inertial forces in ther, u and z-directions,
respectively.

Fr5v2d cos@~V2v!t1u#,

Fu5v2d sin@~V2v!t1u#, Fz50

where the whirl deflexion curve of the cylinder is denoted
d(z) (d!a).

The problem of three-dimensional flow in the cylinder shou
be simplified because it is very difficult to solve exactly. Let
first estimate the order of magnitudes of every term in the eq
tions by nondimensional procedure. The order of magnitude ou,
v is the same as that of cylinder perturbed motion,Dv, whereD is
a typical value ofd(z). The order of magnitudes ofw, on the
other hand, is the order ofDva/L. This is due to the fact that the
order of magnitude of the longitudinal displacement of the liqu
is the same as that of the longitudinal displacement of the cy
der. We introduce the following dimensionless quantities deno
by an overbar:

~ ū,v̄ !5~u,v !/Dv, w̄5w/
aDv

L
, ~ r̄ ,b̄!5~r ,b!/a, z̄5z/L

~ d̄,h̄ !5~d,h!/D, t̄5tv, V̄5V/v, p̄5p/raDv2

~ F̄r ,F̄u!5~Fr ,Fu!/Dv2, F̄z5Fz /
aDv2

L
.

Substituting the above expressions into the related equations
have

]ū

] t̄
1

D

a S ū
]ū

] r̄
1 v̄

]ū

r̄ ]u
2

v̄2

r̄ D1
aD

L2 w̄
]ū

] z̄
22V̄v̄5F̄r2

] p̄

] r̄
(1)

] v̄
] t̄

1
D

a S ū
] v̄
] r̄

1 v̄
] v̄
r̄ ]u

1
ūv̄
r̄ D1

aD

L2 w̄
] v̄
] z̄

12V̄ū5F̄u2
] p̄

r̄ ]u
(2)

]w̄

] t̄
1

D

a S ū
]w̄

] r̄
1 v̄

]w̄

r̄ ]u D1
aD

L2 w̄
]w̄

] z̄
5F̄z2

] p̄

] z̄
(3)

]ū

] r̄
1

ū

r̄
1

] v̄
r̄ ]u

1
a2

L2

]w̄

] z̄
50. (4)

Then the following conclusions are obtained from~1!–~4!:

1 If the cylinder is slender, the ratioa2/L2!1, all the terms
including derivatives ofz in ~8!, ~9!, and ~11! can be omitted
compared with the other terms. Onlyū, v̄, and p̄ remain in Eqs.
~8!, ~9!, and~11! and the problem is reduced to a plane one. Af
ū, v̄, and p̄ are solved,w̄ can then be obtained from Eq.~10!.

2 For a small perturbed motion,S̄5D/a!1, all the nonlinear
terms in the above equations can be neglected, and the proble
reduced further to a linear problem.

The next step is to simplify the boundary conditions. During t
whirl motion, the equation of the deformed side surface of
cylinder partially filled with an inviscid liquid can be written a
r 5a1j(u,z,t). Its normal vector is

n5S 21,
]j

r ]u
,
]j

]zD .8,
© 2002 by ASME Transactions of the ASME
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Hence the boundary condition on the surface is

2u1v
]j

r ]u
1w

]j

]z
5Vn

whereVn is the normal velocity component of the correspondi
point of the cylinder. The corresponding nondimensional bou
ary condition is

2ū1
D

a
v̄

]j̄

r̄ ]u
1

aD

L2 w̄
]j̄

] z̄
5Vn /Dv (5)

where j̄5j/D. The third term of the left side can be omitte
compared with the other terms becausea2/L2!1. And Vn can
also be substituted with velocity projection on theo2xy plane.
Then~5! is altered to the boundary condition of a plane proble
The boundary conditions the inner free surface and the two
faces are discussed in like manner.

Summarily speaking, the flow pattern of the liquid in the cy
inder with small deflexion can be described as a quasi-t
dimensional flow on any section of the cylinder. Thus we can
the formulas of two-dimensional dynamic force of a liqu
~Zhang, Tang, and Tao@3#! to analyze the dynamic stability prob
lem of the flexible spinning cylinder partially filled with an invis
cid liquid.

3 Dynamic Stability
Assume the components of the dynamic force density of

liquid acting on the cylinder areFx8 and Fy8 , respectively, in the
fixed Cartesian coordinate systemo82x8y8z8. Thus we have
~Zhang, Tang, and Tao@3#!

Fx85mcv
2M2d~z8!cosvt Fy85mcv

2M2d~z8!sinvt

where

mc5rpa2 M25
2~V2v!22v2

~11g!~V2v!22v2 S g5
a21b2

a22b2D .

(6)

The resultant force density is

P~z8!5AFx8
2

1Fy8
2

5mcv
2M2d~z8!.
hanics
g
d-

d

m.
end

l-
o-
se
d
-
-

the

In a stable case, this force and the centrifugal force caused
whirling motion of the flexible cylinder together balance the ela
tic force of the flexible cylinder, i.e.,

EId~4!5rRARv2d1mcM2v2d (7)

whererR andAR are the density and sectional area of the cylind
respectively. Equation~16! is a linear ordinary differential equa
tion of d rather than a complex nonlinear equation~Crandall@1#
and Zhang@2#!. This is due to the simplification of the quasi-two
dimensional model.

The boundary conditions of the bending curve are

d~6L !5d9~6L !50. (8)

Only for some special values~eigenvalues!, ~7! has nonvanish
solutions~eigenfunctions!. Equation~7! has a general solution

d~z8!5c1 cosKz81c2 sinKz81c3 coshKz81c4 sinhKz8

where

K45
rRAR1mcM2

EI
v2. (9)

Substituting the above general solution into~8!, we have

S cosKL sinKL coshKL sinhKL

cosKL 2sinKL coshKL 2sinhKL

cosKL sinKL 2coshKL 2sinhKL

cosKL 2sinKL 2coshKL sinhKL

D S c1

c2

c3

c4

D 50.

(10)

After some simplification, it is

Sin 2KL50.

Hence

KnL5
np

2
~n51,2, . . .!.

If n51, K1L5p/2. From~19! we havec25c35c450. The cor-
responding eigenfunction is

w1~z8!5cos
p

2L
z8.
SEPTEMBER 2002, Vol. 69 Õ 709



n

l

-
d

nal

er
ed

ic
en

rch
-

er
s

or
This is a symmetrical whirl mode, and the flexible cylinder
deflected as a bow. Ifn52, K2L5p. We havec15c35c450.
The corresponding eigenfunction is

w2~z8!5sin
p

L
z8.

This is an antisymmetrical whirl mode, and the flexible cylinder
as an S-form. Its middle point is a nodal point.

For the symmetrical mode, from~9! we have

S p

2L D 4

5
rRAR1mcM2

EI
v1

2.

In order to compare this with the result of Wolf@4#. The total
length of the flexible cylinder should be taken alternatively as 2L.
The above expression thus should be rewritten as

2L~rRAR1mcM2!v1
252S p

2L D 4

EIL. (11)

For a rotor, Wolf’s result is

~MR1MCf !v25k (12)

where f equalsM2 in ~6!, and k is the rigidity of the shaft on
which the rotor is mounted.MR and MC are the mass of a solid
rotor and the mass of liquid fully filled, respectively. Compari
~11! and ~12!, we have

2LrRAR5MR , 2Lmc5MC , k52S p

2L D 4

EIL. (13)

Thus the result of the flexible cylinder can correspond to Wo
result of the rotor.

Assume

F5
v

v0
, S5

V

v0
, v0

252S p

2L D 4 EIL

MR
, m5

MC

MR
5

Lmc

rRAR
.

The characteristic Eq.~11! can be written as

~g1m!F422aSF31~aS22g!F212~g11!SF2~11g!S250
(14)
710 Õ Vol. 69, SEPTEMBER 2002
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f’s

wherea5g12m11. AssumingF5S, it corresponds to synchro
nous whirl motion. From~14!, the first critical speed is obtaine
as

S1
25

1

11m
or Vcr,15S p

2L D 2A 2EIL

MR1MC
.

For asynchronous whirling, curveF;S of the flexible cylinder
can directly be referred to the Wolf’s results~@4#!. The instability
region of a spinning speed isB1,S,B2 . The lowest threshold
speed of the system isV15B1v05B1(p/2L)2A2EIL/MR . By
values ofm and g, the liquid influences the value ofB1 , and
therefore the value ofV1 , too.

4 Conclusion
We came to the following conclusions:

1. When the slender ratioa2/L2!1, the three-dimensional flow
in the cylinder can be approximated by a two-dimensio
flow.

2. Using this model, the dynamic stability of a thin cylind
partially filled with a viscous fluid can also be discuss
analytically on the basis that the two-dimensional dynam
force of the viscous fluid acting on the cylinder has be
obtained.
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Between the L-Integral and
the Bueckner Work-Conjugate
Integral’’ „Shi, J. P., Liu, X. H., and Li,
J., 2000 ASME J. Appl. Mech., 67,
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Zhenjiang, Jiangsu 212013, P.R. China

K. Y. Lee
Department of Mechanical Engineering, Yonsei
University, Seoul 120-749, South Korea

Three wrong expressions in the paper~@1#! have been found.
Equations~4! and ~5! in the paper are written in the forms

w~ II !~z!52 iw8~z!, c~ II !~z!52 izc8~z!12i z̄w8~z!, (1)

ui
~ II !5yui ,x2xui ,y (2)

s i j
~ II !5ys i j ,x2xs i j ,y1

1

2 E s i j ,xdy2
1

2 E s i j ,ydx ~ i , j 51,2!.

(3)

1 Complex potentials suggested by Muskhelishvili should be
analytic function~@2#!. However, since the argumentz̄ is involved
in the second term ofc (II )(z) in Eq. ~1!, c (II )(z) cannot be an
analytic function. Therefore,c (II )(z) in Eq. ~1! is a wrong expres-
sion.

2 In the complex variable function method, the displacem
components can be expressed as~@2#!

2G~u1 iv !5kw~z!2zw8~z!2c~z!

5kw~z!1z$2w8~z!%2c~z! (4)

whereG is the shear modulus of elasticity,k5(32n)/(11n) is
for the plane stress problem,k5324n is for the plane strain
problem, andn is the Poisson’s ratio, andw(z) andc(z) are two
analytic functions.

Equation~4! reveals a rule that in a real displacement expr
sion of plane elasticity, if the function after the elastic constank
is w(z), the term afterz in Eq. ~4! should be2w8(z).

On the other hand, from Eq.~4! we have

2GS ]u

]x
1 i

]v
]xD5~kw8~z!2w8~z!!2~zw9~z!1c8~z!!
Copyright © 2Journal of Applied Mechanics
an

nt

s-
t

2GS ]u

]y
1 i

]v
]y D5 i $~kw8~z!2w8~z!!1~zw9~z!1c8~z!!%.

(5)

Therefore, from Eqs.~2! and~5!, the displacement components
Eq. ~2! can be expressed as

2G~u~ II !1 iv ~ II !!52GS yS ]u

]x
1 i

]v
]xD2xS ]u

]y
1 i

]v
]y D D

5k$2 izw8~z!%1z$ i ~w8~z!2 z̄w9~z!!%

2 i z̄c8~z!. (6)

From the fact that

2
d

dz
$2 izw8~z!%52 i ~w8~z!1 z̄w9~z!!Þ i ~w8~z!2 z̄w9~z!!

(7)

and the rule mentioned above, the displacementsu(II ) and v (II )

shown in Eq.~2! are not an elasticity solution. Therefore, th
displacement shown in Eq.~2! is also a wrong expression.

3 In Eq. ~3! an indefinite integral is used to express the str
components. In the continuum medium of elastic body, the in
gral should be path-independent. Also, it is well known that i
function F(x,y)

F~x,y!5E
~xo ,yo!

~x,y!

p~x,y!dx1q~x,y!dy (8)

is a path independent integral, the following condition must
satisfied:

]p~x,y!

]y
5

]q~x,y!

]x
or

]q~x,y!

]x
2

]p~x,y!

]y
50. (9)

If Eq. ~3! were true, substitutingp(x,y)52s i j ,y/2 and
q(x,y)5s i j ,x/2 into Eq.~9! yields the following:

]2s i j

]x2 1
]2s i j

]y2 50. (10)

However, the stress componentss i j are not a harmonic function
in general. Thus, thes i j

(II ) shown by Eq.~3! is also a wrong ex-
pression.
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Discussion: ‘‘A Critical Reexamination
of Classical Metal Plasticity’’
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C. J. Lissenden
Department of Engineering Science and Mechanics,
The Pennsylvania State University, 212 Earth-Engineer
Sciences Building, University Park, PA 16802

The author correctly identifies the backbone of metal plasti
as the Mises yield criterion, the Prandtl-Reuss flow law, a
isotropic/kinematic hardening. However, there has always b
the qualification that these simplifications of plasticity work w
for ‘‘most metals’’ or ‘‘some metals.’’ It is noteworthy that while
the author has devoted a section of his paper to Richmond’s w
refuting the widespread use of the assumption of press
independent flow in metals, he did not reference the keys
work of Spitzig and Richmond@1#, where they provide additiona
results for 1100 aluminum. This would have further reinforced
point. Spitzig and Richmond found 1100 aluminum to exhi
pressure-dependence but not a strength-differential. Here the
strength-differential means a tension-compression asymm
~e.g., compressive yield strength larger than tensile y
strength!, which is different from a Bauschinger effect. The yie
function that Spitzig and Richmond used can be written in
forms

f 5aI11A3J22c

f 5aI 11
A3J2

c
21

whereI 1 andJ2 are the usual stress invariants anda5a/c, a is
the pressure coefficient, andc is the strength coefficient. Th
strength-differential depends only on the parametera, but
pressure-dependence is affected by botha and c. While a and c
were shown to be strain-dependent,a was not~@1#!. In fact, a
5a/c for aluminum was approximately three times that of iro
based materials.

Based on the tensile and compressive yield strengths rep
by Wilson for 2024-T351 aluminum, presumably using the 0.
offset strain definition; the yield function parameters can be
culated and compared with results from Spitzig and Richmon
Table 1.
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The pressure-dependence of 1100 and 2024-T351 is similar
2024-T351 exhibits a strength-differential (2a) of 5.9%, while
1100 does not exhibit an appreciable strength-differential. W
Wilson did not measure volume change, Spitzig and Richm
did, and found there to be no significant dilation; indicating th
an associated flow rule will not correctly predict plastic stra
This is also the case for frictional materials, where it is comm
to employ a nonassociated flow rule.

We have observed strength-differential in laboratory exp
ments using aged Inconel 718~a precipitation strengthened nicke
base alloy! ~@2,3#!, 6061-T6 aluminum and 6092/SiC/17.5-T6~a
particulate reinforced aluminum alloy! ~@4#!. The Mises yield cri-
terion does not apply well to these materials either. Our work
Inconel 718~@3#! indicates that aJ2-J3 yield function, which we
called a threshold function because we were working in the re
of viscoplasticity, along the lines of that proposed by Drucker@5#
for an aluminum alloy was most suitable.

Finally, while it is fairly obvious, it is worth pointing out tha
the Drucker-Prager yield criterion predicts more flow for the sa
tensile stress than the Mises yield criterion simply due to
presence of the positiveI 1 term. Thus, the finite element results
Wilson for Mises and Drucker-Prager yield criteria are se
consistent. It would be interesting to know the range ofI 1 for a
particular notch geometry.
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Table 1 Yield function parameters

Material a
c

~MPa!
a5a/c
~TPa!

2024-T351 aluminum 0.0296 791 37
1100 aluminum~@1#! 0.0014 25 56
Aged maraging steel~@1#! 0.037 1833 20
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In this paper, on page 800,D5should be deleted from Eq.~2.4!.
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